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The lady tasting tea



The lady tasting tea

Your friend asks you to grab a tea with milk for her before meeting
up and she says that she prefers tea popured before the milk. You
stop by a local tea shop and ask for a tea with milk. When you
bring it to her, she complains that it was prepared milk-first.

® You're skeptical that she can tell the difference, so you devise

a test:
® Prepare 8 cups of tea, 4 milk-first, 4 tea-first
® Present cups to friend in a random order
® Ask friend to pick which 4 of the 8 were milk-first
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Lady tasting tea data

Friend picks out all 4 milk-first cups correctly!

library(TPDdata)

tea

## # A tibble: 8 x 2

##  truth guess

## <chr> <chr>

## 1 tea-first tea-first
## 2 milk-first milk-first
## 3 milk-first milk-first
## 4 tea-first tea-first
## 5 tea-first tea-first
## 6 milk-first milk-first
## 7 tea-first tea-first
## 8 milk-first milk-first
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Thought experiment

Could she have been guessing at random? What would guessing
look like?

set.seed(02138)
one_guess <- tea |>

mutate (
one_guess
## # A tibble:
## truth
## <chr>
## 1 tea-first
## 2 milk-first
## 3 milk-first
## 4 tea-first
## 5 tea—first
## 6 milk-first
## 7 tea-first
## 8 milk-first

sample(guess))

8 x 3

guess
<chr>
tea-first
milk-first
milk-first
tea-first
tea-first
milk-first
tea-first
milk-first

4 correct in this random guess!

random_guess
<chr>
milk-first
tea-first
tea-first
milk-first
tea-first
milk-first
tea-first
milk-first
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another_guess <- tea |>
mutate (
another_guess

##
##
##
##
##
##
##
##
##
##
##

#
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A tibble:
truth
<chr>
tea-first
milk-first
milk-first
tea-first
tea-first
milk-first
tea-first
milk-first

sample (guess))

8 x 3

guess

<chr>

tea-first
milk-first
milk-first
tea-first
tea-first
milk-first
tea-first
milk-first

6 correct in this random guess!

random_guess
<chr>
tea-first
tea-first
milk-first
tea-first
milk-first
milk-first
tea-first
milk-first

Another guess
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We could enumerate all possible guesses

choosing one of these at random:

All possible guesses

. “Guessing” would mean

Cup 7 Cup 8
tea tea
tea tea
tea tea
tea tea
tea tea
tea  tea

Cup 5 Cup 6 Cup 7 Cup 8

#i Cup 1 Cup 2 Cup 3 Cup 4 Cup 5 Cup 6
## 1 milk milk milk milk tea  tea
## 2 milk milk milk tea milk tea
## 3 milk milk tea milk milk tea
## 4 milk tea milk milk milk tea
## 5 tea milk milk milk milk tea
## 6 milk milk milk tea tea milk
[snip]

#it Cup 1 Cup 2 Cup 3 Cup 4

## 65 tea tea tea milk milk tea
## 66 milk tea tea tea tea milk
##t 67 tea milk tea tea tea milk
## 68 tea tea milk tea tea milk
## 69 tea tea tea milk tea milk
##t 70 tea tea tea tea milk milk

milk
milk
milk
milk
milk
milk

milk
milk
milk
milk
milk
milk
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Statistical thought experiment

e Statistical thought experiment: how often would she get all 4
correct if she were guessing randomly?

® Only one way to choose all 4 correct cups

® But 70 ways of choosing 4 cups among 8

® Choosing at random: picking each of these 70 with equal
probability

® Chances of guessing all 4 correct is % ~ 0.014 or 1.4%

® — the guessing hypothesis might be implausible
® Impossible? No, because of random chance
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Hypothesis tests



Statistical hypothesis testing

Statistical hypothesis testing is a thought experiment
® Could our results just be due to randome chance?

What would the world look like if we knew the truth?

Example 1:
® An analyst claims that 20% of Boston households are in
poverty
® You take a sample of 900 households and find that 23% of the
sample is under the poverty line
® Should you conclude that the analyst is wrong?

Example 2:
® Trump won 47.5% of the vote in the 2020 election
® |ast YouGov poll of 1,363 likely voters said 44% planned to
vote for Trump
® Could the difference between the poll and the outcome be just
due to random chance?
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Null and alternative hypothesis

® Null hypothesis: Some statement about the population
parameters
® “Devil's advocate” position ~ assumes what you seek to prove
wrong
® Usually that an observed difference is due to chance
® Ex: poll drawn from the same population as all voters
® Denoted Hy

® Alternative hypothesis: The statement we hope or suspect

is true instead of Hy
® |t is the opposite of the null hypothesis

An observed difference is real, not just due to chance

Ex: polling for Trump is systematically wrong

Denoted H; or H,

® Probabilistic proof by contradiction: try to “disprove” the
null
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Hypothesis testing example

® Are we polling the same population as the actual voters?
® |f so, how likely are we to see polling error this big by chance?
® What is the parameter we want to learn about?

® True population mean of the surveys, p

® Null hypothesis: Hp: p = 0.475 (surveys drawing from same
population)

® Alternative hypothesis: Hy: p # 0.475

e Data: poll has X = 0.44 with n = 1363
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null _

)

Statistical thought experiment

If the null were true, what should the distribution of the data
be?

® X;is 1 if respondent i will vote for Trump

® Under null, X; is a coin flip with probability p = 0.475 of

landing on “Trump”

® Y2 | X; is the number in sample that will vote for Trump
We can simulate sums of coin flips using a function called
rbinom()
Compare the distribution of proportions under the null to the
observed proportion

distl <- tibble(
rbinom( 1000, size 1363, 0.475) / 1363

ggplot (null_distl, aes( trump_share)) +

geom_histogram( 0.01) +
geom_vline( 0.44, "indianredi", 1.25) +
geom_vline( 0.475, 1.25)
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Simulations of the reference distribution
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p-value

The p-value is the probability of observing data as or more
extreme as our data under the null

® |f the null is true, how often would we expect polling errors
this big?
® Smaller p-value ~~ stronger evidence against the null
® NOT the probability that the null is true
® p-values are usually two-sided:
® Observed error of 0.44 - 0.475 = -0.035 under the null
® p-value is probability of sample proportions being less that 0.44

plus
® Probability of sample proportions being greater than
0.4754-0.035=0.51

mean(null_dist1$trump_share < 0.44) + mean(null_dist1$trump_share > 0.51)

## [1] 0.01
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One-sided tests

® Sometimes our hypothesis is directional
® We only consider evidence against the null from one direction

® Null: our polls are from the same population as actual voters
® Hy:p=20.475

® One-sided alternative: polls underestimate Trump support
® H;:p <0475

[ ]

Makes the p-value one-sided:

® What's the probability of a random sample underestimating
Trump support by as much as we see in the sample?
® Always smaller than a two-sided p-value

mean(null_disti1$trump_share < 0.44)

## [1] 0.005
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Rejecting the null

® Tests usually end with a decision to reject the null or not

® Choose a threshold below which you'll reject the null

® Test level al the threshold for a test
® Decision rule: ““reject the null if the p-value is below «o”
® Otherwise ““fail to reject”, not “accept the null”

e Common (arbitrary) thresholds:

® p > 0.1 “not statistically significant”
® p < 0.05 “statistically significant”
® p < 0.01 “statistically significant”
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Testing errors

® A p-value of 0.05 says that data this extreme would only
happen in 5% of repeated samples if the null were true
® -+ 5% of the time we will reject the null when it is actually true

® Test errors:

Hy True Hy False

Retain Hy Awesome! Type Il error
Reject Hy Type | error  Good stuff!

Which types of error is worse?

® Type | error because it's the worst

® “Convicting” an innocent null hypothesis
® Type Il error less serious

® Missed out on an awesome finding
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Hypothesis testing using
infer



library(infer)

gss

## # A tibble:

##
##
##
##
##
##
##
##
##
##
##
## 10

© 00N WN -

500 x 11
year age sex
<dbl> <dbl> <fct>
2014 36 male
1994 34 female
1998 24 male
1996 42 male
1994 31 male
1996 32 female
1990 48 female
2016 36 female
2000 30 female
1998 33 female

## # i 490 more rows

college
<fct>
degree

no degree
degree

no degree
degree

no degree
no degree
degree
degree

no degree

GSS data from infer

partyid hompop hours

<fct>

ind
rep
ind
ind
rep
rep
dem
ind
rep
dem

3

N O R NN D

<dbl> <dbl>

50
31
40
40
40
53
32
20
40
40

income
<ord>

$2500~
$2000~
$2500~
$2500~
$2500~
$2500~
$2500~
$2500~
$2500~
$1500~

class
<fct>
midd~
work~
work~
work~
midd~
midd~
work~
midd~
midd~
work~

finrela we

<fct>

below ~
below ~
below ~
above ~
above ~
average
below ~
above ~
average
far be~
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What is the average hours worked?

dplyr way:

gss |>
summarize (mean (hours))

## # A tibble: 1 x 1

##  ‘mean(hours) ¢
## <dbl>
## 1 41.4

infer way:

observed_mean <- gss [>
specify( hours) |[>
calculate( "mean"
observed_mean

## Response: hours (numeric)
## # A tibble: 1 x 1

## stat
## <dbl>
## 1 41.4
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Hypothesis test

Could we get a mean this different from 40 hours if that was the
true population average of hours worked?

Null and alternative:

Ho : pihours = 40
Hl - Hhours 7é 40

How do we perform this test using infer? The bootstrap!
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gss |>
specify( hours) |[>
hypothesize( "point", 40)

## Response: hours (numeric)
## Null Hypothesis: point
## # A tibble: 500 x 1

## hours
## <dbl>
## 1 50
## 2 31
## 3 40
## 4 40
## 5 40
## 6 53
## 7 32
## 8 20
## 9 40
## 10 40

## # i 490 more rows

Specifying the hypotheses
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Generating the null distribution

We can use the bootstrap to determine how much variation there
will be around 50 in the null distribution

null_dist2 <- gss [>

specify( hours) |[>
hypothesize( "point", 40) |>
generate( 1000, "bootstrap") |>
calculate( "mean"

null_dist2

## Response: hours (numeric)
## Null Hypothesis: point
## # A tibble: 1,000 x 2

## replicate stat

## <int> <dbl>
## 1 1 40.3
## 2 2 39.8
## 3 3 40.0
## 4 4 39.2
## 5 5 40.3
## 6 6 40.2
##H 7 7 40.4
## 8 8 39.5

9 9 39.8

## 26 /47
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Visualizing the p-value

We can visualize our bootstrapped null distribution and the p-value
as a shaded region:

null_dist2 [|>
visualize() +
shade_p_value(observed_mean,
"two-sided")
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Two-sample tests
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Social pressure experiment

Experimental study where each household for 2006 MI primary
was randomly assigned to one of 4 conditions:

® Control: no mailer

® Civic duty: mailer saying voting is your civic duty

® Hawthorne: a “we're watching you"” message

® Neighbors: naming-and-shaming social pressure mailer

Outcome: whether household members voted or not
We'll focus on Neighbors vs. Control

Randomized implies samples are independent
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Neighbors mailer

Dear Registered Voter:
WHAT IF YOUR NEIGHBORS KNEW WHETHER YOU VOTED?

Why do so many people fail to vote? We've been talking about the problem for
years, but it only seems to get worse. This year, we're taking a new approach.
We're sending this mailing to you and your neighbors to publicize who does and
does not vote.

The chart shows the names of some of your neighbors, showing which have voted in
the past. After the August 8 election, we intend to mail an updated chart. You
and your neighbors will all know who voted and who did not.

DO YOUR CIVIC DUTY —VOTE!

MAPLE DR Aug 04 Nov04 Aug 08
9995 JOSEPH JAMES SMITH Voted  Voted
9995 JENNIFER KAY SMITH Voted
9997 RICHARD B JACKSON Voted
9999 KATHY MARIE JACKSON Voted
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Social pressure data

social <-read.csv('"data/social.csv")
social <- as_tibble(social)
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Two-sample hypotheses

Parameter: population ATE pu1 — puc

® u7: Turnout rate in the population if everyone received
treatment
® sc: Turnout rate in the population if everyone received control

Goal: learn about the population difference in means

Usual null hypothesis: no difference in population means
(ATE=0)

® Null: Hy: pur —pc =0

® Two-sided alternative: Hy : ut — pic #0

In words: are the differences in sample means just due to
chance?
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Permutation test

How do we generate draws of the difference in means under the
null?

Ho:pr—pc=0
If the voting distribution is the same in the treatment and control

groups, we could randomly swap who is labelled as treated and
who is labelled as control and it shouldn’t matter

Permutation test: generate the null distribution by permuting the
group labels and see the resulting distribution of differences in
proportions
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social <- social [>

filter(messages %in% c("Neighbors", "Control"))
social |>
mutate ( sample (messages)) |>

select (primary2006, messages, messages_permute)

## # A tibble: 229,444 x 3

## primary2006 messages messages_permute
## <int> <chr> <chr>

## 1 0 Control Control
## 2 1 Control Control
## 3 1 Control Neighbors
## 4 0 Control Control
## 5 0 Control Control
## 6 1 Control Control
## 7 0 Control Control
## 8 1 Control Control
## 9 1 Control Neighbors

## 10 1 Control Control
## # i 229,434 more rows

Permuting the labels
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Two-sample permutation
tests with infer



Calculating the difference in proportion

infer functions with binary outcomes work best with factor
variables:

social <- social |[>
mutate ( if_else(primary2006==1, "Voted", "Didn't Vote"))

est_ate <- social |>

specify(turnout ~ messages, "Voted") |>
calculate( "diff in props", c("Neighbors", "Control"))
est_ate

## Response: turnout (factor)
## Explanatory: messages (factor)
## # A tibble: 1 x 1

## stat
## <dbl>
## 1 0.0813
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infer functions with binary outcomes work best with factor

variables:

social

specify(turnout ~ messages,

## Response: turnout (factor)
## Explanatory: messages (factor)

|>

Specifying the relationship of interest

## # A tibble: 229,444 x 2

##
##
##
##
##
##
##
##
##
##
##
## 10

© 00N WN -

turnout
<fct>
Didn’t Vote
Voted
Voted
Didn’t Vote
Didn’t Vote
Voted
Didn’t Vote
Voted
Voted
Voted

messages
<fct>
Control
Control
Control
Control
Control
Control
Control
Control
Control
Control

## # i 229,434 more rows
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Setting the hypotheses

The null for these two-sample tests is called “independence” for
the infer package because the assumption is that the two
variables are statistically independent

social |>
specify(turnout ~ messages, "Voted") |>
hypothesize( "independence")

## Response: turnout (factor)

## Explanatory: messages (factor)
## Null Hypothesis: independence
## # A tibble: 229,444 x 2

## turnout messages
## <fct> <fct>

## 1 Didn’t Vote Control
## 2 Voted Control
## 3 Voted Control
## 4 Didn’t Vote Control
## 5 Didn’t Vote Control
## 6 Voted Control
## 7 Didn’t Vote Control
## 8 Voted Control
## 9 Voted Control
## 10 Voted Control 39/47



Generating the permutations

We can tell infer to do our permutation test by using the
argument type = "permute" to generate():

## Response: turnout (factor)

## Explanatory: messages (factor)
## Null Hypothesis: independence
## # A tibble: 229,444,000 x 3
## # Groups: replicate [1,000]

## turnout messages replicate
## <fct> <fct> <int>
## 1 Voted Control 1
## 2 Voted Control 1
## 3 Didn’t Vote Control 1
## 4 Voted Control 1
## 5 Voted Control 1
## 6 Didn’t Vote Control 1
## 7 Didn’t Vote Control 1
## 8 Didn’t Vote Control 1
## O Didn’t Vote Control 1
## 10 Didn’t Vote Control 1

## # i 229,443,990 more rows
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Calculating the diff in proportions in each sample

null _dist3 <- social |[>
specify(turnout ~ messages, success = "Voted") |[|>
hypothesize(null="independence") |>
generate(reps = 1000, type="permute") |>
calculate(stat="diff in props", order = c("Neighbors", "«
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null_dist3

## Response: turnout (factor)
## Explanatory: messages (factor)
## Null Hypothesis: independence
1,000 x 2

## # A tibble:

## replicate
## <int>
##
##
##
##
##
##
##
##

© 00N WN -

**
*
O © 00N U WN -

H*
**
[y
o
-

## # i 990 more

stat
<dbl>
0.00173
0.00235
0.00845
-0.00211
-0.000000932
-0.00295
-0.00267
0.00104
-0.000975
0.00421
rows
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Visualizing

null_dist3 [>
visualize ()

Simulation-Based Null Distribution

~0.005 0.000 0.005 0010 43 /47
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ate_pval <- null _dist3 |[>
get_p_value( est_ate,
ate_pval

## # A tibble: 1 x 1
##  p_value
## <dbl>
## 1 0

Calculating p-values

"both")
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Visualizing p-values
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Confidence intervals vs. hypothesis testing

Hypothesis testing is probably the dominant interpretive tool
in applied social science

Nontheless, confidence intervals are generally much more
informative

Hypothesis tests only allow you to confirm (or fail to confirm)
that there's a non-zero effect; but this effect could be so tiny
that we don't care

In hypothesis testing, failing to confirm the null tells us
virtually nothing with a confidence interval, it's possible to
conclude that there is-at most-a tiny effect (if the confidence
interval contains only a small range of values close to zero)
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Class exercise

Let's design a research!

Think about your dependent and independent variables, first
@ dependent variable:
® independent variable:

What would be the unit of your analyses?

What are your null and alternative hypotheses?

Which research methods would you employ to test your
hypotheses?
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