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The lady tasting tea

Your friend asks you to grab a tea with milk for her before meeting
up and she says that she prefers tea popured before the milk. You
stop by a local tea shop and ask for a tea with milk. When you
bring it to her, she complains that it was prepared milk-first.

• You’re skeptical that she can tell the difference, so you devise
a test:

• Prepare 8 cups of tea, 4 milk-first, 4 tea-first
• Present cups to friend in a random order
• Ask friend to pick which 4 of the 8 were milk-first
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Lady tasting tea data

Friend picks out all 4 milk-first cups correctly!

library(TPDdata)
tea

## # A tibble: 8 x 2
## truth guess
## <chr> <chr>
## 1 tea-first tea-first
## 2 milk-first milk-first
## 3 milk-first milk-first
## 4 tea-first tea-first
## 5 tea-first tea-first
## 6 milk-first milk-first
## 7 tea-first tea-first
## 8 milk-first milk-first
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Thought experiment
Could she have been guessing at random? What would guessing
look like?

set.seed(02138)
one_guess <- tea |>

mutate(random_guess = sample(guess))
one_guess

## # A tibble: 8 x 3
## truth guess random_guess
## <chr> <chr> <chr>
## 1 tea-first tea-first milk-first
## 2 milk-first milk-first tea-first
## 3 milk-first milk-first tea-first
## 4 tea-first tea-first milk-first
## 5 tea-first tea-first tea-first
## 6 milk-first milk-first milk-first
## 7 tea-first tea-first tea-first
## 8 milk-first milk-first milk-first

4 correct in this random guess!
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Another guess

another_guess <- tea |>
mutate(random_guess = sample(guess))

another_guess

## # A tibble: 8 x 3
## truth guess random_guess
## <chr> <chr> <chr>
## 1 tea-first tea-first tea-first
## 2 milk-first milk-first tea-first
## 3 milk-first milk-first milk-first
## 4 tea-first tea-first tea-first
## 5 tea-first tea-first milk-first
## 6 milk-first milk-first milk-first
## 7 tea-first tea-first tea-first
## 8 milk-first milk-first milk-first

6 correct in this random guess!
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All possible guesses

We could enumerate all possible guesses. “Guessing” would mean
choosing one of these at random:
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Statistical thought experiment

• Statistical thought experiment: how often would she get all 4
correct if she were guessing randomly?

• Only one way to choose all 4 correct cups
• But 70 ways of choosing 4 cups among 8
• Choosing at random: picking each of these 70 with equal

probability
• Chances of guessing all 4 correct is 1

70 ≈ 0.014 or 1.4%
• → the guessing hypothesis might be implausible

• Impossible? No, because of random chance
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Hypothesis tests
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Statistical hypothesis testing

• Statistical hypothesis testing is a thought experiment
• Could our results just be due to randome chance?

• What would the world look like if we knew the truth?
• Example 1:

• An analyst claims that 20% of Boston households are in
poverty

• You take a sample of 900 households and find that 23% of the
sample is under the poverty line

• Should you conclude that the analyst is wrong?
• Example 2:

• Trump won 47.5% of the vote in the 2020 election
• Last YouGov poll of 1,363 likely voters said 44% planned to

vote for Trump
• Could the difference between the poll and the outcome be just

due to random chance?
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Null and alternative hypothesis

• Null hypothesis: Some statement about the population
parameters

• “Devil’s advocate” position ⇝ assumes what you seek to prove
wrong

• Usually that an observed difference is due to chance
• Ex: poll drawn from the same population as all voters
• Denoted H0

• Alternative hypothesis: The statement we hope or suspect
is true instead of H0

• It is the opposite of the null hypothesis
• An observed difference is real, not just due to chance
• Ex: polling for Trump is systematically wrong
• Denoted H1 or Ha

• Probabilistic proof by contradiction: try to “disprove” the
null
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Hypothesis testing example

• Are we polling the same population as the actual voters?
• If so, how likely are we to see polling error this big by chance?

• What is the parameter we want to learn about?
• True population mean of the surveys, p
• Null hypothesis: H0: p = 0.475 (surveys drawing from same

population)
• Alternative hypothesis: H1: p ̸= 0.475

• Data: poll has X = 0.44 with n = 1363
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Statistical thought experiment

• If the null were true, what should the distribution of the data
be?

• Xi is 1 if respondent i will vote for Trump
• Under null, Xi is a coin flip with probability p = 0.475 of

landing on “Trump”
• Σ2

i=1Xi is the number in sample that will vote for Trump
• We can simulate sums of coin flips using a function called

rbinom()
• Compare the distribution of proportions under the null to the

observed proportion

null_dist1 <- tibble(
trump_share = rbinom(n = 1000, size 1363, prob = 0.475) / 1363

)
ggplot(null_dist1, aes(x = trump_share)) +

geom_histogram(binwidth=0.01) +
geom_vline(xintercept = 0.44, color= "indianred1", size = 1.25) +
geom_vline(xintercept = 0.475, size = 1.25)
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Simulations of the reference distribution
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p-value
p-value
The p-value is the probability of observing data as or more
extreme as our data under the null

• If the null is true, how often would we expect polling errors
this big?

• Smaller p-value ⇝ stronger evidence against the null
• NOT the probability that the null is true

• p-values are usually two-sided:
• Observed error of 0.44 - 0.475 = -0.035 under the null
• p-value is probability of sample proportions being less that 0.44

plus
• Probability of sample proportions being greater than

0.475+0.035=0.51

mean(null_dist1$trump_share < 0.44) + mean(null_dist1$trump_share > 0.51)

## [1] 0.01
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Two-sided p-value
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One-sided tests

• Sometimes our hypothesis is directional
• We only consider evidence against the null from one direction

• Null: our polls are from the same population as actual voters
• H0 : p = 0.475

• One-sided alternative: polls underestimate Trump support
• H1 : p < 0.475

• Makes the p-value one-sided:
• What’s the probability of a random sample underestimating

Trump support by as much as we see in the sample?
• Always smaller than a two-sided p-value

mean(null_dist1$trump_share < 0.44)

## [1] 0.005
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Rejecting the null

• Tests usually end with a decision to reject the null or not
• Choose a threshold below which you’ll reject the null

• Test level αL the threshold for a test
• Decision rule: ““reject the null if the p-value is below α”
• Otherwise ““fail to reject”, not “accept the null”

• Common (arbitrary) thresholds:
• p ≥ 0.1 “not statistically significant”
• p < 0.05 “statistically significant”
• p < 0.01 “statistically significant”
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Testing errors

• A p-value of 0.05 says that data this extreme would only
happen in 5% of repeated samples if the null were true

• ⇝ 5% of the time we will reject the null when it is actually true
• Test errors:

H0 True H0 False

Retain H0 Awesome! Type II error
Reject H0 Type I error Good stuff!

Which types of error is worse?

• Type I error because it’s the worst
• “Convicting” an innocent null hypothesis

• Type II error less serious
• Missed out on an awesome finding
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Hypothesis testing using
infer
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GSS data from infer

library(infer)
gss

## # A tibble: 500 x 11
## year age sex college partyid hompop hours income class finrela weight
## <dbl> <dbl> <fct> <fct> <fct> <dbl> <dbl> <ord> <fct> <fct> <dbl>
## 1 2014 36 male degree ind 3 50 $2500~ midd~ below ~ 0.896
## 2 1994 34 female no degree rep 4 31 $2000~ work~ below ~ 1.08
## 3 1998 24 male degree ind 1 40 $2500~ work~ below ~ 0.550
## 4 1996 42 male no degree ind 4 40 $2500~ work~ above ~ 1.09
## 5 1994 31 male degree rep 2 40 $2500~ midd~ above ~ 1.08
## 6 1996 32 female no degree rep 4 53 $2500~ midd~ average 1.09
## 7 1990 48 female no degree dem 2 32 $2500~ work~ below ~ 1.06
## 8 2016 36 female degree ind 1 20 $2500~ midd~ above ~ 0.478
## 9 2000 30 female degree rep 5 40 $2500~ midd~ average 1.10
## 10 1998 33 female no degree dem 2 40 $1500~ work~ far be~ 0.550
## # i 490 more rows
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What is the average hours worked?
dplyr way:

gss |>
summarize(mean(hours))

## # A tibble: 1 x 1
## ‘mean(hours)‘
## <dbl>
## 1 41.4

infer way:

observed_mean <- gss |>
specify(response = hours) |>
calculate(stat="mean")

observed_mean

## Response: hours (numeric)
## # A tibble: 1 x 1
## stat
## <dbl>
## 1 41.4
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Hypothesis test

Could we get a mean this different from 40 hours if that was the
true population average of hours worked?

Null and alternative:

H0 : µhours = 40

H1 : µhours ̸= 40

How do we perform this test using infer? The bootstrap!
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Specifying the hypotheses

gss |>
specify(response = hours) |>
hypothesize(null = "point", mu = 40)

## Response: hours (numeric)
## Null Hypothesis: point
## # A tibble: 500 x 1
## hours
## <dbl>
## 1 50
## 2 31
## 3 40
## 4 40
## 5 40
## 6 53
## 7 32
## 8 20
## 9 40
## 10 40
## # i 490 more rows
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Generating the null distribution
We can use the bootstrap to determine how much variation there
will be around 50 in the null distribution
null_dist2 <- gss |>

specify(response = hours) |>
hypothesize(null = "point", mu = 40) |>
generate(reps = 1000, type = "bootstrap") |>
calculate(stat = "mean")

null_dist2

## Response: hours (numeric)
## Null Hypothesis: point
## # A tibble: 1,000 x 2
## replicate stat
## <int> <dbl>
## 1 1 40.3
## 2 2 39.8
## 3 3 40.0
## 4 4 39.2
## 5 5 40.3
## 6 6 40.2
## 7 7 40.4
## 8 8 39.5
## 9 9 39.8
## 10 10 41.2
## # i 990 more rows
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Visualizing the p-value

We can visualize our bootstrapped null distribution and the p-value
as a shaded region:

null_dist2 |>
visualize() +
shade_p_value(observed_mean,

direction = "two-sided")
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Two-sample tests
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Social pressure experiment

• Experimental study where each household for 2006 MI primary
was randomly assigned to one of 4 conditions:

• Control: no mailer
• Civic duty: mailer saying voting is your civic duty
• Hawthorne: a “we’re watching you” message
• Neighbors: naming-and-shaming social pressure mailer

• Outcome: whether household members voted or not
• We’ll focus on Neighbors vs. Control
• Randomized implies samples are independent
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Neighbors mailer

Social Pressure and Voter Turnout February 2008

46
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Social pressure data

social <-read.csv("data/social.csv")
social <- as_tibble(social)
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Two-sample hypotheses

• Parameter: population ATE µT − µC
• µT : Turnout rate in the population if everyone received

treatment
• µC : Turnout rate in the population if everyone received control

• Goal: learn about the population difference in means
• Usual null hypothesis: no difference in population means

(ATE=0)
• Null: H0 : µT − µC = 0
• Two-sided alternative: H1 : µT − µC ̸= 0

• In words: are the differences in sample means just due to
chance?
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Permutation test

How do we generate draws of the difference in means under the
null?

H0 : µT − µC = 0

If the voting distribution is the same in the treatment and control
groups, we could randomly swap who is labelled as treated and
who is labelled as control and it shouldn’t matter

Permutation test: generate the null distribution by permuting the
group labels and see the resulting distribution of differences in
proportions
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Permuting the labels

social <- social |>
filter(messages %in% c("Neighbors", "Control"))

social |>
mutate(messages_permute = sample(messages)) |>
select(primary2006, messages, messages_permute)

## # A tibble: 229,444 x 3
## primary2006 messages messages_permute
## <int> <chr> <chr>
## 1 0 Control Control
## 2 1 Control Control
## 3 1 Control Neighbors
## 4 0 Control Control
## 5 0 Control Control
## 6 1 Control Control
## 7 0 Control Control
## 8 1 Control Control
## 9 1 Control Neighbors
## 10 1 Control Control
## # i 229,434 more rows
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Two-sample permutation
tests with infer
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Calculating the difference in proportion

infer functions with binary outcomes work best with factor
variables:

social <- social |>
mutate(turnout = if_else(primary2006==1, "Voted", "Didn't Vote"))

est_ate <- social |>
specify(turnout ~ messages, success = "Voted") |>
calculate(stat = "diff in props", order = c("Neighbors", "Control"))

est_ate

## Response: turnout (factor)
## Explanatory: messages (factor)
## # A tibble: 1 x 1
## stat
## <dbl>
## 1 0.0813
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Specifying the relationship of interest
infer functions with binary outcomes work best with factor
variables:

social |>
specify(turnout ~ messages, success = "Voted")

## Response: turnout (factor)
## Explanatory: messages (factor)
## # A tibble: 229,444 x 2
## turnout messages
## <fct> <fct>
## 1 Didn’t Vote Control
## 2 Voted Control
## 3 Voted Control
## 4 Didn’t Vote Control
## 5 Didn’t Vote Control
## 6 Voted Control
## 7 Didn’t Vote Control
## 8 Voted Control
## 9 Voted Control
## 10 Voted Control
## # i 229,434 more rows
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Setting the hypotheses
The null for these two-sample tests is called “independence” for
the infer package because the assumption is that the two
variables are statistically independent
social |>

specify(turnout ~ messages, success = "Voted") |>
hypothesize(null = "independence")

## Response: turnout (factor)
## Explanatory: messages (factor)
## Null Hypothesis: independence
## # A tibble: 229,444 x 2
## turnout messages
## <fct> <fct>
## 1 Didn’t Vote Control
## 2 Voted Control
## 3 Voted Control
## 4 Didn’t Vote Control
## 5 Didn’t Vote Control
## 6 Voted Control
## 7 Didn’t Vote Control
## 8 Voted Control
## 9 Voted Control
## 10 Voted Control
## # i 229,434 more rows
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Generating the permutations

We can tell infer to do our permutation test by using the
argument type = "permute" to generate():

## Response: turnout (factor)
## Explanatory: messages (factor)
## Null Hypothesis: independence
## # A tibble: 229,444,000 x 3
## # Groups: replicate [1,000]
## turnout messages replicate
## <fct> <fct> <int>
## 1 Voted Control 1
## 2 Voted Control 1
## 3 Didn’t Vote Control 1
## 4 Voted Control 1
## 5 Voted Control 1
## 6 Didn’t Vote Control 1
## 7 Didn’t Vote Control 1
## 8 Didn’t Vote Control 1
## 9 Didn’t Vote Control 1
## 10 Didn’t Vote Control 1
## # i 229,443,990 more rows
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Calculating the diff in proportions in each sample

null_dist3 <- social |>
specify(turnout ~ messages, success = "Voted") |>
hypothesize(null="independence") |>
generate(reps = 1000, type="permute") |>
calculate(stat="diff in props", order = c("Neighbors", "Control"))
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null_dist3

## Response: turnout (factor)
## Explanatory: messages (factor)
## Null Hypothesis: independence
## # A tibble: 1,000 x 2
## replicate stat
## <int> <dbl>
## 1 1 0.00173
## 2 2 0.00235
## 3 3 0.00845
## 4 4 -0.00211
## 5 5 -0.000000932
## 6 6 -0.00295
## 7 7 -0.00267
## 8 8 0.00104
## 9 9 -0.000975
## 10 10 0.00421
## # i 990 more rows
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Visualizing
null_dist3 |>

visualize()
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Calculating p-values

ate_pval <- null_dist3 |>
get_p_value(obs_stat = est_ate, direction = "both")

ate_pval

## # A tibble: 1 x 1
## p_value
## <dbl>
## 1 0
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Visualizing p-values
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Confidence intervals vs. hypothesis testing

• Hypothesis testing is probably the dominant interpretive tool
in applied social science

• Nontheless, confidence intervals are generally much more
informative

• Hypothesis tests only allow you to confirm (or fail to confirm)
that there’s a non-zero effect; but this effect could be so tiny
that we don’t care

• In hypothesis testing, failing to confirm the null tells us
virtually nothing with a confidence interval, it’s possible to
conclude that there is-at most-a tiny effect (if the confidence
interval contains only a small range of values close to zero)
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Class exercise

Let’s design a research!

Think about your dependent and independent variables, first

1) dependent variable:
2) independent variable:

What would be the unit of your analyses?

What are your null and alternative hypotheses?

Which research methods would you employ to test your
hypotheses?
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