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Populations

Population: group of units/people we want to learn about

Population parameter: some numerical summary of the population
we would like to know - population mean/proportion, population
standard deviation

Census: complete recording of data on the entire population
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Samples

Sample: subset of the population taken in some way (hopefully
randomly)

Estimator or sample statistic: numerical summary of the sample
that is our “best guess” for the unknown population parameter
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Sampling at random

Random sample: units selected into sample from population with a
non-zero probability

Simple random sample: all units have the same probability of
being selected into the sample
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Expected value

The expected value of a sample statistic, E[p̂], is the average value
of the statistic across repeated samples

The expected value of a sample proportion from a simple random
sample is equal to the population proportion, E[p̂] = p
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Standard error

The standard error is the standard deviation of the sample statistic
across repeated samples

Tells us how far away, on average, the sample proportion will be
from the population proportion
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Standard error vs. population standard deviation

The standard error is the SD of the statistic across repeated
samples

Should not be confused with the population standard deviation or
sample standard deviation, both of which measure how far units are
away from a mean
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Polls
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How popular is Joe Biden?

• What proportion of the public approves of Biden’s job as
president?

• Gallup poll results from Sept 1st to 16th:
• 812 adult Americans
• Telephone interviews
• Approve (42%), Disapprove (56%)
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Poll in our framework

• Population: adults 18+ living in 50 US states and DC

• Population parameter: population proportion of all US adults
that approve of Biden
• Census: not possible

• Sample: random digit dialing phone numbers (cell and
landline)

• Point estimate : sample proportion that approve of Biden
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Random variables and
probability distributions
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Random variables

Random variables are numerical summaries of chance processes:

Xi =
{
1, if respondent i supports Biden,
0, otherwise

(1)

With a simple random sample, chance of Xi = 1 is equal to the
population proportion of people that support Biden
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Types of random variables

• Discrete: X can take a finite (or countably infinite) number of
values

• Number of heads in 5 coin flips
• Sampled senator is a woman (X=1) or not (X=0)
• Number of battle deaths in a civil war

• Continuous: X can take any real value (usually within an
interval)
• GDP per capita (average income) in a county
• Share of population that approves of Biden
• Amount of time spent on a website
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Probability distributions

Probability distributions tell us the chances of different values of a
r.v. occurring

Discrete variables: like a frequency barplot for the population
distribution

Continuous variables: like a continuous version of population
histogram
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Sampling distribution
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Key properties of sums and means

Suppose X1,X2, ...,Xn is a simple random sample from a population
distribution with mean µ (“mu”) and variance σ2 (“sigma squared”)

Sample mean: Xn = 1
n Σn

i=1Xi

Xn = X1 + X2 + ...+ Xn
n

. . .

Xn is a random variable with a distribution!!
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Sample means/proportions distribution

Sampling distributions are the probability distributions of an
estimator like Xn

When we have access to the full population, we can approximate the
sampling distribution with repeated sampling

Let’s sample 50 observations from a sample distribution and repeat
the process 100, 1,000, 10,000, and 100,000 times!
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Sampling distribution of the sample mean

Suppose X1,X2, ...,Xn is a simple random sample from a population
distribution with mean µ and variance σ2

Expected value of the distribution of Xn is the population mean, µ

Standard error of the distribution of Xn is approximately σ/
√

n:

SE ≈ population standard deviation√
sample size
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Unbiasedness

An estimator is unbiased when its expected value across repeated
samples equals the population parameter of interest

Sample mean of a simple random sample is unbiased for the
population mean, E[Xn] = µ

An estimator that isn’t unbiased is called biased
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Precision vs. accuracy
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Law of large numbers

Law of large numbers
Let X1, ...,Xn be a simple random sample from a population with
mean µ and finite variance σ2. Then, Xn converges to µ as *n*
gets large

• Probability of Xn being “far away” from µ goes to 0 as n gets
big

• The distribution of sample mean “collapses” to population
mean

• Can see this from the SE of Xn : SE = σ/
√

n

• Not necessarily true with a biased sample
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Normal variables and the
Central Limit Theorem
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Normal random variable

• A normal distribution has a PDF (probability density
function) that is the classic “bell-shaped” curve

• Extremely ubiquitous in statistics
• An r.v. is more likely to be in the center, rather than the tails

• Three key properties of this PDF:
• Unimodal: one peak at the mean
• Symmetric around the mean
• Everywhere positive: the function always has values greater

than, or equal to, 0
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Normal distribution

• A normal distribution can be affected by two values:

• mean/expected value usually written as µ
• variance written as σ2 (standard deviation is σ)
• Written X N(µ, σ2)

• Standard normal distribution: mean 0 and standard
deviation 1
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Central limit theorem

Central limit theorem
Let X1, ...,Xn be a simple random sample from a population with
mean µ and finite variance σ2. Then, Xn will be approximately
distributed N(µ, σ2/n) in large samples

• “Sample means tend to be normally distributed as samples get
large”

•  we know (an approx. of) the entire probability distribution
of Xn

• Approximation is better as n goes up
• Does not depend on the distribution of Xi
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Empirical rule for the normal distribution

• If X N(µ, σ2), then:
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• If X N(µ, σ2), then:
• ≈ 68% of the distribution of X is within 1 SD of the mean
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Empirical rule for the normal distribution

• If X N(µ, σ2), then:
• ≈ 68% of the distribution of X is within 1 SD of the mean
• ≈ 95% of the distribution of X is within 2 SDs of the mean
• ≈ 99.7% of the distribution of X is within 3 SDs of the mean

• CLT + empirical rule: we’ll know the rough distribution of
estimation errors we should expect
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Where are we going?

We only get 1 sample. Can we learn about the population from that
sample?
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Resampling from our
sample (bootstrapping)
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American National Election Survey data

Variable Description

state State of respondent
district Congressional district of respondent
pid7 Party ID (1=Strong D, 7=Strong R)
pres_vote Self reported vote in 2020
sci_therm 0-100 therm score for scientists
rural_therm 0-100 therm score for rural Americans
favor_voter_id 1 if respondent thinks voter ID should be required
envir_doing_more 1 if respondent thinks gov’t should be doing more

climate change
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ANES data

library(TPDdata)
anes

## # A tibble: 5,162 x 8
## state district pid7 pres_vote sci_therm rural_therm favor_voter_id envir_d~1
## <chr> <dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 ID 2 4 Other 70 60 1 0
## 2 VA 2 3 Biden 100 75 0 1
## 3 CO 4 4 Trump 60 90 1 0
## 4 TX 5 3 Biden 85 85 1 1
## 5 WI 6 6 Trump 85 70 1 1
## 6 CA 40 2 Biden 50 50 1 0
## 7 WI 5 2 Biden 100 70 1 0
## 8 OR 4 7 Trump 70 50 0 1
## 9 MA 5 3 Biden 80 70 0 1
## 10 NV 3 1 Biden 85 40 0 1
## # ... with 5,152 more rows, and abbreviated variable name 1: envir_doing_more
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Sample statistic

What is the average thermometer score for scientists?
anes |>

summarize(mean(sci_therm))

## # A tibble: 1 x 1
## `mean(sci_therm)`
## <dbl>
## 1 80.6

What is the sampling distribution of this average? We only have
this 1 draw!
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Notation review

Population: all US adults

Population parameter: average feeling thermometer score for
scientists among all US adults

Sample: (complicated) random sample of all US adults

Sample statistic/point estimate: sample average of thermometer
scroes

Roughly how far our point estimate is likely to be from the truth?
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The bootstrap

Mimic sampling from the population by resampling many times
from the sample itself

Bootstrap resampling done with replacement (same row can
appear more than once)
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One bootstrap resample

boot_1 <- anes |>
slice_sample(prop = 1, replace = TRUE)

boot_1

## # A tibble: 5,162 x 8
## state district pid7 pres_vote sci_therm rural_therm favor_voter_id envir_d~1
## <chr> <dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 MN 3 5 Biden 85 70 1 1
## 2 AZ 4 7 Trump 70 80 1 0
## 3 DC 1 3 Biden 90 80 0 0
## 4 CA 49 3 Biden 80 50 0 1
## 5 NJ 10 1 Biden 100 55 1 1
## 6 KY 5 7 Trump 60 100 1 0
## 7 NE 2 2 Biden 50 50 0 0
## 8 GA 11 5 Trump 70 70 1 0
## 9 MA 5 3 Biden 80 70 0 1
## 10 VT 1 1 Trump 100 100 1 1
## # ... with 5,152 more rows, and abbreviated variable name 1: envir_doing_more
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Sample mean in the bootstrap sample

boot_1 |>
summarize(mean(sci_therm))

## # A tibble: 1 x 1
## `mean(sci_therm)`
## <dbl>
## 1 80.4
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Many bootstrap samples

library(infer)
bootstrap_dist<-anes |>

rep_sclice_sample(prop=1, reps=1000, replace=TRUE) |>
group_by(replicate) |>
summarize(sci_therm_mean = mean(sci_therm))

bootstrap_dist
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Many bootstrap samples

## # A tibble: 1,000 x 2
## replicate sci_therm_mean
## <int> <dbl>
## 1 1 80.4
## 2 2 80.4
## 3 3 80.7
## 4 4 80.9
## 5 5 80.7
## 6 6 80.1
## 7 7 80.9
## 8 8 80.3
## 9 9 80.3
## 10 10 80.3
## # ... with 990 more rows
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Visualizing the bootstrap distribution
bootstrap_dist |>

ggplot(aes(x = sci_therm_mean)) +
geom_histogram(binwidth=0.1)
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Bootstrap distribution

Bootstrap distribution approximates the sampling distribution of
the estimator

Both should have a similar shape and spread if sampling from the
distribution ≈ bootstrap resampling

Approximation gets better as sample gets bigger
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Comparing to the point estimate

Given the sampling, not surprising that bootstrap distribution is
centered on the point estimate:
bootstrap_dist |>

summarize(mean(sci_therm_mean))

## # A tibble: 1 x 1
## `mean(sci_therm_mean)`
## <dbl>
## 1 80.6
anes |>

summarize(mean(sci_therm))

## # A tibble: 1 x 1
## `mean(sci_therm)`
## <dbl>
## 1 80.6
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Confidence intervals
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What is a confidence interval?

Point estimate: best single
guess about the population
parameter. Unlikely to be
exactly correct

Confidence interval: a range of
plausible values of the
population parameter
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Confidence intervals

• Each sample gives a different CI or toss of the ring

• Some samples the ring will will contain the target (the CI will
contain the truth) other times it won’t
• We don’t know if the CI for our sample contains the truth

• Confidence level: percent of the time our CI will contain the
population parameter
• Number of ring tosses that will hit the target
• We get to choose, but typical values are 90%, 95%, and 99%
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Confidence intervals as occational liars

The confidence level of a CI determines how often the CI will be
wrong

A 95% confidence interval will:

• Tell you the truth in 95% of repeated samples (contain the
population parameter 95% of the time)
• Lie to you in 5% of repeated sample (not contain the
population parameter 5% of the time)

Can you tell if your particular confidence interval is telling the truth?
No!
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Calculating confidence
intervals
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infer package

Possible to use quantile to calculate CIs, but infer package is a
more unified framework for CIs and hypothesis tests

We’ll use a dplyr like approach of chained calls
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Step 1: define an outcome of interest

Start with defining the variable of interest:
anes |>

specify(response = sci_therm)

## Response: sci_therm (numeric)
## # A tibble: 5,162 x 1
## sci_therm
## <dbl>
## 1 70
## 2 100
## 3 60
## 4 85
## 5 85
## 6 50
## 7 100
## 8 70
## 9 80
## 10 85
## # ... with 5,152 more rows

57 / 71



Step 2: generate bootstraps

Next infer can generate bootstraps with the generate() function
(similar to rep_slice_sample()):
anes |>

specify(response = sci_therm) |>
generate(reps = 1000, type="bootstrap")
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anes |>
specify(response = sci_therm) |>
generate(reps = 1000, type="bootstrap")

## Response: sci_therm (numeric)
## # A tibble: 5,162,000 x 2
## # Groups: replicate [1,000]
## replicate sci_therm
## <int> <dbl>
## 1 1 100
## 2 1 85
## 3 1 100
## 4 1 70
## 5 1 95
## 6 1 85
## 7 1 100
## 8 1 50
## 9 1 80
## 10 1 100
## # ... with 5,161,990 more rows
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Step 3: calculate sample statistics

Use calculate() to do the group_by(replicate) and
summarize commands in one:
boot_dist_infer <- anes |>

specify(response = sci_therm) |>
generate(reps = 1000, type = "bootstrap") |>
calculate(stat = "mean")
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boot_dist_infer

## Response: sci_therm (numeric)
## # A tibble: 1,000 x 2
## replicate stat
## <int> <dbl>
## 1 1 80.5
## 2 2 79.9
## 3 3 80.5
## 4 4 81.0
## 5 5 80.5
## 6 6 80.6
## 7 7 80.8
## 8 8 80.5
## 9 9 80.3
## 10 10 80.7
## # ... with 990 more rows
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Step 3(b) visualize the bootstrap distribution
infer also has a shortcut for plotting called visualize()
visualize(boot_dist_infer)
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Step 4: calculate CIs

Finally we can calculate the CI using the percentile method with
get_confidence_interval():
perc_ci_95 <- boot_dist_infer |>

get_confidence_interval(level = 0.95, type = "percentile")
perc_ci_95

## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 80.1 81.2
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Step 4(b): visualize CIs
visualize(boot_dist_infer) +

shade_confidence_interval(endpoints = perc_ci_95)
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Interpreting confidence
intervals
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Interpretation and simulation

• Be careful about interpretation:
• A 95% confidence interval will contain the true value in 95% of

repeated samples

• For a particular calculated confidence interval, truth is either in
it or not

• A simulation can help our understanding:
• Draw samples of size 1500 assuming population approval for

Biden of p=0.4
• Calculate 95% confidence intervals in each sample
• See how many overlap with the true population approval
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