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1. Varying effects by
groups



Heterogeneous treatment effects

® Heterogeneous treatment effects: effect varies across groups
® Average effect of a drug is 0, but + for men and — for women

® |mportant questions for determining who should receive
treatment

® Social pressure experiment:

® primary2004 whether the person voted in 2004, before the
experiment.

® Do 2004 voters react differently to social pressure mailer than
nonvoters?

® Two approaches:

® Difference in effects between groups (subsetting approach)

® |nteraction terms in regression
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Subset approach

social <-read.csv('"data/social.csv")

social [>

filter(messages %inj, c("Neighbors", "Control")) |[|>
group_by(messages, primary2004) |[>
summarize ( mean (primary2006)) |>
pivot_wider(

messages,

avg_vote

) 1>
mutate ( . = © ) >
pull(diff_exp_vote_2004)

## [1] 0.06929617 0.09652525
ATE for the nonvoters: 0.0693
ATE for the voters: 0.0965
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Difference in effects

How much does the esimated treatment effect differ between

groups?
diff_exp_vote<- social [>
filter (messages %inJ c("Neighbors", "Control")) |>
group_by (messages, primary2004) |>
summarize ( mean (primary2006)) |>
pivot_wider(
messages,
avg_vote
) 1>
mutate( ) = c ) >

pull(diff_exp_vote_2004)

diff (diff_exp_vote) [1]

## [1] 0.02722908

® Any easier way to allow for different effects of treatment by

groups?
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Interaction terms

® (Can allow for different effects of a variable with an interaction
term

turnout; = a + B1primary2004; 4+ Baneighbors;+
B3(primary2004; x neighbors;) + €;

® Primary 2004 variable multiplied by the neighbors variable

® Equal to 1 if voted in 2004 (primary2004 == 1) and received
neighbors mailer (neighbors == 1)

® Easiest to understand by investigating predicted values
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Predicted values from non-interacted model

® et X; = primary2004; and Z; = neighbors;:

Yi = a4 piXi + 5Zi

Control (Z; =0)  Neighbors(Z; = 1)
a+ @2 R
+ 5 a+ f1+ B

no vote (X; = 0)
vote (X; = 1)

e Effect of neighbors for non-voters: (& + 32) — (&) = B2

e Effect of neighbors for voters:(a + Bl + Bz) —(@+ 1) =52
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Predicted from interacted model

Now for the interacted model:

Yi = a+ fiXi + BaZi + B3XiZ;

Control (Z; =0)  Neighbors(Z; = 1)
A athy
+ 51 Q-+ P1+ B2+ B3

no vote (X; = 0)
vote (X; = 1)

QY Q)

N

e Effect of neighbors for non-voters: (& + 32) — (&) = 5

* Effect of neighbors for voters: L
(@+P1+ B2+ B3)—(a+pP1)=P2+ B
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Interpreting coefficients

Y = a-+p54 primary2004,-+32neighbors,+33(primary2004, xneighbors;)

Control group Neighbors group

2004 primary non-voter & a + B
2004 primary voter a+ b1 a+p1+ B2+ B3

a: turnout rate for 2004 nonvoters in control group
31: avg difference in turnout between 2004 voters and nonvoters

Bo: effect of neighbors for 2004 nonvoters

~

B3: difference in the effect of neighbors mailer between 2004 voters
& nonvoters
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Interactions in R

® You can include an interaction with varl:var2:

social.neighbor <- social [|>
filter(messages %in% c("Neighbors", "Control"))

fit <- Im(primary2006 ~ primary2004 + messages +

primary2004:messages, social.neighbor)
coef (fit)
## (Intercept) primary2004
## 0.23710990 0.14869507
## messagesNeighbors primary2004:messagesNeighbors
## 0.06929617 0.02722908

e Compare coefficients to subset approach
ATE for nonvoters and voters:
## [1] 0.06929617 0.09652525
Difference in effects

## [1] 0.02722908
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2. Interactions with
Continuous Variables



Social pressure experiment

We will keep using the social pressure experiment with two
conditions (only) (neighbors and control)

Let's first create an age variable

social <- social |>
mutate( 2006-yearofbirth)

social.neighbor <- social [>

filter(messages %in’, c("Neighbors", "Control"))
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Heterogeneous effects

In the previous example:
® Effect of the neighbors mailer differ for previous vs. nonvoters?

® Used an interaction term to assess effect heterogeneity
between groups

How does the effect of the Neighbors mailer varies by age?

® Not just two groups, but a continuum of possible age values

Remarkably, the same interaction term will work here too!

Yi = a + fiage; + Paneighbors; + B3(age; x neighbors;) + €;
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Predicted values from non-interacted model

® Let X; = age; and Z; = neighbors;:

Yi=a+ hXi + i

Control group Neighbors group
25yrold (X; =25) @&+ $125 a+ 5125+ Ba
26yrold (X; =26) a4+ 5126 a+ 126 + 52

Effect of neighbors for a 25 year-old:
(@ + P125 + B2) — (@ + p125) = B,
Effect of neighbors for a 26 year-old:

(@+ 126 + ) — (@ + 126) = P>
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Predicted Turnout Rate
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Predicted Turnout Rate
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Predicted Turnout Rate

Visualizing the regression
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Predicted Turnout Rate

Visualizing the regression
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Predicted Turnout Rate

Visualizing the regression
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Interpreting coefficients

~

Yi=a+ Blage,- + Bgneighbors,- + B3(age,- X neighbors;)

® «: average turnout for 0 year-olds in the control group
° 31: slope of regression line for age in the control group
° Eg: average effect of neighbors mailer for O year olds

° 53: change in the effect of the neighbors mailer for a 1-year
increase in age

® Effect for x year-old: 32 + B}x
® Effect for (x + 1) year-olds: Ba + B}(x +1)

® Change in effect: 53
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Interactions in R

® You can use the : way to create interaction terms like last time:

int.fit <- lm(primary2006 ~ age + messages + age:messages, social.neighb
coef (int.fit)

#it (Intercept) age messagesNeighbors
## 0.0974732574 0.0039982107 0.0498294321
## age:messagesNeighbors
## 0.0006283079

e Or you can use the varl * var2 shortcut, which will add both
variable and their interaction:

int.fit2 <- lm(primary2006 ~ age * messages, social.neighbor)
coef (int.fit2)

#it (Intercept) age messagesNeighbors
## 0.0974732574 0.0039982107 0.0498294321
## age:messagesNeighbors
## 0.0006283079
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General interpretation of interactions

Yi = a+ BiXi + BaZi + B3 X Zi

~

Q: average outcome when X; and Z; are 0

31: average change in Y; of a one-unit change in X; when Z; =0
52: average change in Y; of a one-unit change in Z; when X; =0
33 has two equivalent interpretations:

® Change in the effect/slope of X; for a one-unit change in Z;
® Change in the effect/slope of Z; for a one-unit change in X;

These hold no matter what types of variables they are!
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3. Nonlinear relationship
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Social pressure experiment

® We'll look at the Michigan experiment that was trying to see if
social pressure affects turnout
® |oad the data and create an age variable:

social <- read.csv("data/social.csv")
social$age <- 2006 - social$yearofbirth
summary (social$age)

social.neighbor <- social [>
filter(messages %in% c("Neighbors", "Control"))
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Linear regression are linear

~

Y, =a+ 5X

® Standard linear regression can only pick up linear relationships

® What if the relationship between X; and Y; is nonlinear?
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Adding a squared term

® To allow for nonlinearity in age, add a squared term to the
model:

V_A~.7 3 2
Y; = & + Brage; + P2(age?)

® We are now fitting a parabola to the data

® In R, we need to wrap the squared term in I():

fit.sq <- lm(primary2006 ~ age + I(age”2), social)
coef (fit.sq)

##  (Intercept) age I(age™2)
## -8.168043e-02 1.227357e-02 -8.078954e-05

® 5. how the effect of age increases as age increases

27 /44



Predicted values from Im()

® We can get predicted values out of R using the predict()
function:

predict(fit.sq, list( c(20, 21, 22)))
## 1 2 3
## 0.1314752 0.1404364 0.1492361

® Create a vector of ages to predict and save predictions:

age.vals <- 20:85
age.preds <- predict(fit.sq, list ( age.vals:

® Plot the predictions:

plot( age.vals, y-age.preds, c(0.1, 0.55),
"Age", "Predicted Turnout Rate",
"dodgerblue", 2)
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Plotting lines instead of points

e |f you want to connect the dots in your scatterplot, you can use
the type = "I" (“line” type)

plot(x = age.vals, y=age.preds, ylim = c(0.1, 0.55),
xlab = "Age", ylab = "Predicted Turnout Rate",
col = "dodgerblue", 1lwd=2, type = "1")

30/44



Predicted Turnout Rate

0.5

0.4

0.3

0.2

0.1

Plotting predicted values

20

30

40

50

Age

60 70 80

31/44



Predicted Turnout Rate

0.5

0.4

0.3

0.2

0.1

Comparing to linear fit

20

30

40

50

Age

60 70 80

32/44



Diagnosing nonlinearity
® One independent variable: just look at a scatterplot
e With multiple independent variables, harder to diagnose
® One useful tool: scatterplot of residuals versus independent
variables
® Example: health data (weight and step)

library(TPDdata)
library(lubridate)

health <- health |>
mutate ( year (date)) [>
mutate ( yday(date)) [|>
filter(year==2017) |>
filter(dayofyear < 120)

health <- drop_na(health)
w.fit <-lm(weight ~ steps_lag + date, health) s3/44



Residual plot

plot(health$steps_lag, residuals(w.fit),
xlab = "Lagged Steps", ylab = "Residuals")
plot(health$dayofyear, residuals(w.fit),
xlab = "Day of the Year (out of 365)",
ylab = "Residuals")
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Residuals
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Add a squared term for a better fit

w.fit.sq <- lm(weight ~ steps_lag+ dayofyear + I(dayofyear~2),
data=health)
coef(w.fit.sq)

#it (Intercept) steps_lag dayofyear I(dayofyear~2)
## 177.221763772 0.048823891 -0.425866681 0.002210719

plot (health$steps_lag, residuals(w.fit.sq),
xlab = "Lagged Steps", ylab = "Residuals")

plot (health$dayofyear, residuals(w.fit.sq),
xlab = "Day of the Year (out of 365)",
ylab = "Residuals")
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Residuals
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Class exercises
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Introduction

® We are going to cover some tools for exploring bivariate
relationships

e We'll use the data from the Brookckman & Kalla (2016)
transphobia study

® Basic summary of experiment:
® Randomly assigned door-to-door canvassers to two conditions

® Conditions: perspective-taking script (treatment) or recycling
script (placebo)

® Follow up surveys at 3 days, 3 weeks, 6 weeks, and 3 months
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Data

library(tidyverse)
phobia<-read_csv("data/transphobia_all.csv")
phobia <- drop_na(phobia)

phobia <- phobia [>

mutate( ifelse(treat_ind == "Treat.", 1, 0))
Variable Description
wave Baseline, 3 days, 21 days, 42 days, and 90 days
age Age of the respondent in years
female 1=respondent marked “Female” on voter

voted_gen_14
voted_gen_12
treat_ind

racename
democrat

therm_trans
therm_obama

registration, 0 otherwise

1 if respondent voted in the 2014 general election
1 if respondent voted in the 2012 general election
1 if respondent was assigned to treatment, 0 for
control

character name of racial identity indicated on
voter file

1 if respondent is a registered Democrat

0-100 feeling therm. about transgender people
0-100 feeling therm. about Barack Obama
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Run a regression of thermometer scores for transgender people in
wave 1 (3 days) on the treatment indicator (treat_ind), the
indicator for if the respondent is a Democrat (democrat), and the
interaction between the two variables

Interpret each of the coefficients in terms of the effects of the
intervention

Q1
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Run a regression of thermometer scores for transgender people in
wave 1 (3 days) on the treatment indicator (treat_ind), the
indicator fo rif the respondent is a women (female), and the
interaction between the two variables.

Interpret each of the coefficients in terms of the effects of the
intervention.

Q2
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Q3

Run a regression of thermometer scores for transgender people in
wave 1 on the treatment indicator, age, and the interaction between

the two.

What is the estimated effect for a 25 year old? For a 50 year old?
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Q4

Run a regression of baseline Obama thermometer scores
(therm_obama) on age and the square of age to assess the
nonlinear relationship between them.

Calculate predicted values from the model for ages 18 to 90 and
plot these as a line
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