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1. Varying effects by
groups
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Heterogeneous treatment effects

• Heterogeneous treatment effects: effect varies across groups

• Average effect of a drug is 0, but + for men and − for women
• Important questions for determining who should receive

treatment

• Social pressure experiment:
• primary2004 whether the person voted in 2004, before the

experiment.
• Do 2004 voters react differently to social pressure mailer than

nonvoters?

• Two approaches:
• Difference in effects between groups (subsetting approach)
• Interaction terms in regression
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Subset approach
social <-read.csv("data/social.csv")

social |>
filter(messages %in% c("Neighbors", "Control")) |>
group_by(messages, primary2004) |>
summarize(avg_vote = mean(primary2006)) |>
pivot_wider(
names_from = messages,
values_from = avg_vote

) |>
mutate(diff_exp_vote_2004 = `Neighbors` - `Control`) |>
pull(diff_exp_vote_2004)

## [1] 0.06929617 0.09652525

ATE for the nonvoters:

0.0693

ATE for the voters: 0.0965
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Difference in effects

How much does the esimated treatment effect differ between
groups?
diff_exp_vote<- social |>

filter(messages %in% c("Neighbors", "Control")) |>
group_by(messages, primary2004) |>
summarize(avg_vote = mean(primary2006)) |>
pivot_wider(
names_from = messages,
values_from = avg_vote

) |>
mutate(diff_exp_vote_2004 = `Neighbors` - `Control`) |>
pull(diff_exp_vote_2004)

diff(diff_exp_vote)[1]

## [1] 0.02722908

• Any easier way to allow for different effects of treatment by
groups?
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Interaction terms

• Can allow for different effects of a variable with an interaction
term

turnouti = α + β1primary2004i + β2neighborsi+

β3(primary2004i × neighborsi) + εi

• Primary 2004 variable multiplied by the neighbors variable
• Equal to 1 if voted in 2004 (primary2004 == 1) and received

neighbors mailer (neighbors == 1)

• Easiest to understand by investigating predicted values
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Predicted values from non-interacted model

• Let Xi = primary2004i and Zi = neighborsi :

Ŷi = α̂ + β̂1Xi + β̂2Zi

Control (Zi = 0) Neighbors(Zi = 1)

no vote (Xi = 0)

α̂ α̂ + β̂2
vote (Xi = 1) α̂ + β̂1 α̂ + β̂1 + β̂2

• Effect of neighbors for non-voters: (α̂ + β̂2) − (α̂) = β̂2

• Effect of neighbors for voters:(α̂ + β̂1 + β̂2) − (α̂ + β̂1) = β̂2
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Ŷi = α̂ + β̂1Xi + β̂2Zi

Control (Zi = 0) Neighbors(Zi = 1)

no vote (Xi = 0) α̂ α̂ + β̂2
vote (Xi = 1) α̂ + β̂1

α̂ + β̂1 + β̂2

• Effect of neighbors for non-voters: (α̂ + β̂2) − (α̂) = β̂2

• Effect of neighbors for voters:(α̂ + β̂1 + β̂2) − (α̂ + β̂1) = β̂2

8 / 44



Predicted values from non-interacted model

• Let Xi = primary2004i and Zi = neighborsi :
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Predicted from interacted model

Now for the interacted model:

Ŷi = α̂ + β̂1Xi + β̂2Zi + β̂3XiZi

Control (Zi = 0) Neighbors(Zi = 1)

no vote (Xi = 0)

α̂ α̂ + β̂2
vote (Xi = 1) α̂ + β̂1 α̂ + β̂1 + β̂2 + β̂3

• Effect of neighbors for non-voters: (α̂ + β̂2) − (α̂) = β̂2

• Effect of neighbors for voters:
(α̂ + β̂1 + β̂2 + β̂3) − (α̂ + β̂1) = β̂2 + β̂3
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Interpreting coefficients

Ŷi = α̂+β̂1primary2004i+β̂2neighborsi+β̂3(primary2004i×neighborsi)

Control group Neighbors group

2004 primary non-voter α̂ α̂ + β̂2
2004 primary voter α̂ + β̂1 α̂ + β̂1 + β̂2 + β̂3

α̂: turnout rate for 2004 nonvoters in control group

β̂1: avg difference in turnout between 2004 voters and nonvoters

β̂2: effect of neighbors for 2004 nonvoters

β̂3: difference in the effect of neighbors mailer between 2004 voters
& nonvoters
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Interactions in R

• You can include an interaction with var1:var2:

social.neighbor <- social |>
filter(messages %in% c("Neighbors", "Control"))

fit <- lm(primary2006 ~ primary2004 + messages +
primary2004:messages, data = social.neighbor)

coef(fit)

## (Intercept) primary2004
## 0.23710990 0.14869507
## messagesNeighbors primary2004:messagesNeighbors
## 0.06929617 0.02722908

• Compare coefficients to subset approach

ATE for nonvoters and voters:

## [1] 0.06929617 0.09652525

Difference in effects

## [1] 0.02722908
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2. Interactions with
Continuous Variables
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Social pressure experiment

We will keep using the social pressure experiment with two
conditions (only) (neighbors and control)

Let’s first create an age variable
social <- social |>

mutate(age = 2006-yearofbirth)

social.neighbor <- social |>
filter(messages %in% c("Neighbors", "Control"))
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Heterogeneous effects

• In the previous example:
• Effect of the neighbors mailer differ for previous vs. nonvoters?

• Used an interaction term to assess effect heterogeneity
between groups

• How does the effect of the Neighbors mailer varies by age?
• Not just two groups, but a continuum of possible age values

• Remarkably, the same interaction term will work here too!

Yi = α + β1agei + β2neighborsi + β3(agei × neighborsi) + εi
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Predicted values from non-interacted model
• Let Xi = agei and Zi = neighborsi :

Ŷi = α̂ + β̂1Xi + β̂2Zi

Control group Neighbors group

25yr old (Xi = 25) α̂ + β̂125 α̂ + β̂125 + β̂2
26yr old (Xi = 26) α̂ + β̂126 α̂ + β̂126 + β̂2

Effect of neighbors for a 25 year-old:

(α̂ + β̂125 + β̂2) − (α̂ + β̂125) = β̂2

Effect of neighbors for a 26 year-old:

(α̂ + β̂126 + β̂2) − (α̂ + β̂126) = β̂2
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Visualizing the regression

# Predicted values from interacted model

Ŷi = α̂ + β̂1Xi + β̂2Zi + β̂3XiZi

Control group Neighbors group

25yr old (Xi = 25) α̂ + β̂125 α̂ + β̂125 + β̂2 + β̂325
26yr old (Xi = 26) α̂ + β̂126 α̂ + β̂126 + β̂2 + β̂326

Effect of neighbors for a 25 year-old:

(α̂ + β̂125 + β̂2 + β̂325) − (α̂ + β̂125) = β̂2 + β̂325

Effect of neighbors for a 26 year-old:
(α̂ + β̂126 + β̂2 + β̂326) − (α̂ + β̂126) = β̂2 + β̂326

Effect of neighbors for a x year-old: β̂2 + β̂3x
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Visualizing the regression
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Interpreting coefficients

Ŷi = α̂ + β̂1agei + β̂2neighborsi + β̂3(agei × neighborsi)

• α: average turnout for 0 year-olds in the control group

• β̂1: slope of regression line for age in the control group

• β̂2: average effect of neighbors mailer for 0 year olds

• β̂3: change in the effect of the neighbors mailer for a 1-year
increase in age

• Effect for x year-old: β̂2 + β̂3x
• Effect for (x + 1) year-olds: β̂2 + β̂3(x + 1)

• Change in effect: β̂3
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Interactions in R

• You can use the : way to create interaction terms like last time:

int.fit <- lm(primary2006 ~ age + messages + age:messages, data = social.neighbor)
coef(int.fit)

## (Intercept) age messagesNeighbors
## 0.0974732574 0.0039982107 0.0498294321
## age:messagesNeighbors
## 0.0006283079

• Or you can use the var1 * var2 shortcut, which will add both
variable and their interaction:

int.fit2 <- lm(primary2006 ~ age * messages, data = social.neighbor)
coef(int.fit2)

## (Intercept) age messagesNeighbors
## 0.0974732574 0.0039982107 0.0498294321
## age:messagesNeighbors
## 0.0006283079
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General interpretation of interactions

Ŷi = α̂ + β̂1Xi + β̂2Zi + β̂3XiZi

α̂: average outcome when Xi and Zi are 0

β̂1: average change in Yi of a one-unit change in Xi when Zi = 0

β̂2: average change in Yi of a one-unit change in Zi when Xi = 0

β̂3 has two equivalent interpretations:

• Change in the effect/slope of Xi for a one-unit change in Zi

• Change in the effect/slope of Zi for a one-unit change in Xi

These hold no matter what types of variables they are!
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3. Nonlinear relationship
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Social pressure experiment

• We’ll look at the Michigan experiment that was trying to see if
social pressure affects turnout

• Load the data and create an age variable:
social <- read.csv("data/social.csv")
social$age <- 2006 - social$yearofbirth
summary(social$age)
social.neighbor <- social |>

filter(messages %in% c("Neighbors", "Control"))
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Linear regression are linear

Ŷi = α̂ + β̂1Xi

• Standard linear regression can only pick up linear relationships

• What if the relationship between Xi and Yi is nonlinear?
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Adding a squared term

• To allow for nonlinearity in age, add a squared term to the
model:

Ŷi = α̂ + β̂1agei + β̂2(age2i )

• We are now fitting a parabola to the data

• In R, we need to wrap the squared term in I():
fit.sq <- lm(primary2006 ~ age + I(ageˆ2), social)
coef(fit.sq)

## (Intercept) age I(age^2)
## -8.168043e-02 1.227357e-02 -8.078954e-05

• β̂2: how the effect of age increases as age increases
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Ŷi = α̂ + β̂1agei + β̂2(age2i )

• We are now fitting a parabola to the data

• In R, we need to wrap the squared term in I():

fit.sq <- lm(primary2006 ~ age + I(ageˆ2), social)
coef(fit.sq)

## (Intercept) age I(age^2)
## -8.168043e-02 1.227357e-02 -8.078954e-05

• β̂2: how the effect of age increases as age increases

27 / 44



Adding a squared term

• To allow for nonlinearity in age, add a squared term to the
model:
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Predicted values from lm()

• We can get predicted values out of R using the predict()
function:

predict(fit.sq, newdata = list(age = c(20, 21, 22)))

## 1 2 3
## 0.1314752 0.1404364 0.1492361

• Create a vector of ages to predict and save predictions:
age.vals <- 20:85
age.preds <- predict(fit.sq, newdata = list (age = age.vals))

• Plot the predictions:
plot(x = age.vals, y=age.preds, ylim = c(0.1, 0.55),

xlab = "Age", ylab = "Predicted Turnout Rate",
col = "dodgerblue", lwd=2)
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Plotting predicted values
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Plotting lines instead of points

• If you want to connect the dots in your scatterplot, you can use
the type = "l" (“line” type)

plot(x = age.vals, y=age.preds, ylim = c(0.1, 0.55),
xlab = "Age", ylab = "Predicted Turnout Rate",
col = "dodgerblue", lwd=2, type = "l")
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Plotting predicted values
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Comparing to linear fit
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Diagnosing nonlinearity
• One independent variable: just look at a scatterplot

• With multiple independent variables, harder to diagnose

• One useful tool: scatterplot of residuals versus independent
variables

• Example: health data (weight and step)
library(TPDdata)
library(lubridate)

health <- health |>
mutate(year=year(date)) |>
mutate(dayofyear = yday(date)) |>
filter(year==2017) |>
filter(dayofyear < 120)

health <- drop_na(health)
w.fit <-lm(weight ~ steps_lag + date, data = health)
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Residual plot

plot(health$steps_lag, residuals(w.fit),
xlab = "Lagged Steps", ylab = "Residuals")

plot(health$dayofyear, residuals(w.fit),
xlab = "Day of the Year (out of 365)",
ylab = "Residuals")
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Residual plot
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Add a squared term for a better fit

w.fit.sq <- lm(weight ~ steps_lag+ dayofyear + I(dayofyearˆ2),
data=health)

coef(w.fit.sq)

## (Intercept) steps_lag dayofyear I(dayofyear^2)
## 177.221763772 0.048823891 -0.425866681 0.002210719
plot(health$steps_lag, residuals(w.fit.sq),

xlab = "Lagged Steps", ylab = "Residuals")
plot(health$dayofyear, residuals(w.fit.sq),

xlab = "Day of the Year (out of 365)",
ylab = "Residuals")
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Residual plot, redux
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Class exercises

38 / 44



Introduction

• We are going to cover some tools for exploring bivariate
relationships

• We’ll use the data from the Brookckman & Kalla (2016)
transphobia study

• Basic summary of experiment:
• Randomly assigned door-to-door canvassers to two conditions
• Conditions: perspective-taking script (treatment) or recycling

script (placebo)
• Follow up surveys at 3 days, 3 weeks, 6 weeks, and 3 months
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Data
library(tidyverse)
phobia<-read_csv("data/transphobia_all.csv")
phobia <- drop_na(phobia)
phobia <- phobia |>

mutate(treat_ind = ifelse(treat_ind == "Treat.", 1, 0))

Variable Description

wave Baseline, 3 days, 21 days, 42 days, and 90 days
age Age of the respondent in years
female 1=respondent marked “Female” on voter

registration, 0 otherwise
voted_gen_14 1 if respondent voted in the 2014 general election
voted_gen_12 1 if respondent voted in the 2012 general election
treat_ind 1 if respondent was assigned to treatment, 0 for

control
racename character name of racial identity indicated on

voter file
democrat 1 if respondent is a registered Democrat
therm_trans 0-100 feeling therm. about transgender people
therm_obama 0-100 feeling therm. about Barack Obama
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Q 1

Run a regression of thermometer scores for transgender people in
wave 1 (3 days) on the treatment indicator (treat_ind), the
indicator for if the respondent is a Democrat (democrat), and the
interaction between the two variables

Interpret each of the coefficients in terms of the effects of the
intervention
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Q 2

Run a regression of thermometer scores for transgender people in
wave 1 (3 days) on the treatment indicator (treat_ind), the
indicator fo rif the respondent is a women (female), and the
interaction between the two variables.

Interpret each of the coefficients in terms of the effects of the
intervention.
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Q3

Run a regression of thermometer scores for transgender people in
wave 1 on the treatment indicator, age, and the interaction between
the two.

What is the estimated effect for a 25 year old? For a 50 year old?
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Q4

Run a regression of baseline Obama thermometer scores
(therm_obama) on age and the square of age to assess the
nonlinear relationship between them.

Calculate predicted values from the model for ages 18 to 90 and
plot these as a line
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