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Agenda

Model fit

Multiple regression

Categorical independent variables (lab)

More lab!
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1. Model fit
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Presidential popularity and the midterms

Does popularity of the president or recent changes in the economy
better predict midterm election outcomes?

Variable Description

year midterm election year
president name of president
party Democrat or Republican
approval Gallup approval rating at midterms
rdi_change % change in real disposable income over the year

before midterms
seat_change change in the number of House seats for the

president’s party
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library(TPDdata)
midterms

## # A tibble: 20 x 6
## year president party approval seat_change rdi_change
## <dbl> <chr> <chr> <dbl> <dbl> <dbl>
## 1 1946 Truman D 33 -55 NA
## 2 1950 Truman D 39 -29 8.2
## 3 1954 Eisenhower R 61 -4 1
## 4 1958 Eisenhower R 57 -47 1.1
## 5 1962 Kennedy D 61 -4 5
## 6 1966 Johnson D 44 -47 5.3
## 7 1970 Nixon R 58 -8 6.6
## 8 1974 Ford R 54 -43 6.4
## 9 1978 Carter D 49 -11 7.7
## 10 1982 Reagan R 42 -28 4.8
## 11 1986 Reagan R 63 -5 5.1
## 12 1990 H.W. Bush R 58 -8 5.6
## 13 1994 Clinton D 46 -53 3.9
## 14 1998 Clinton D 66 5 5.6
## 15 2002 W. Bush R 63 6 2.6
## 16 2006 W. Bush R 38 -30 5.7
## 17 2010 Obama D 45 -63 3.5
## 18 2014 Obama D 40 -13 4.6
## 19 2018 Trump R 38 -42 4.1
## 20 2022 Biden D 42 NA -0.003
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Fitting the approval model

fit.app <- lm(seat_change ~ approval, data = midterms)
fit.app

##
## Call:
## lm(formula = seat_change ~ approval, data = midterms)
##
## Coefficients:
## (Intercept) approval
## -96.58 1.42

Let’s write out the mathematical model together and then
interpret the coefficient!

For a one-point increase in presidential approval, the predicted seat
change increases by 1.42
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Fitting the income model

Now look at the change in real disposable income as an independent
variable

fit.rdi <- lm(seat_change ~ rdi_change, data = midterms)
fit.rdi

##
## Call:
## lm(formula = seat_change ~ rdi_change, data = midterms)
##
## Coefficients:
## (Intercept) rdi_change
## -29.413 1.215

For a one point increase in the change in real disposable income, the
predicted seat change increases by 1.21.
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How well do the models “fit the data”?

• How well does the model predict the outcome variable in the
data?
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Model fit

Model prediction error:

prediction error =
n∑

i=1
(actuali − predictedi)2

Prediction error for regression: Sum of squared residuals

SSR =
n∑

i=1
(Yi − Ŷi)2

Lower SSR is better, right?
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These two regression lines have approximately the same SSR:
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Benchmarking model fit
Benchmarking our prediction using the proportional reduction in error:

reduction in prediction error using model
baseline prediction error

Baseline prediction error without a regression is using the mean of Y to
predict. This is called the total sum of squares:

TSS =
n∑

i=1
(Yi − Y )2

Leads to the coefficient of determination, R2, one summary of LS
model fit:

R2 = TSS − SSR
TSS = how much smaller LS prediction errors are vs mean

prediction error using the mean
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Total SS vs. SSR
Deviations from the mean
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Total SS vs. SSR
Residuals
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Model fit in R

• To access R2 from the lm() output, use the summary()
function:

fit.app.sum <- summary(fit.app)
fit.app.sum$r.squared

## [1] 0.4498696

• Compare to the fit using change in income:
fit.rdi.sum <- summary(fit.rdi)
fit.rdi.sum$r.squared

## [1] 0.01202348

Which does a better job predicting midterm election outcomes?
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Accessing model fit via broom package

We can also access summary statistics like model fit using the
glance() function from broom:
library(broom)
glance(fit.app)

## # A tibble: 1 x 12
## r.squ~1 adj.r~2 sigma stati~3 p.value df logLik AIC BIC devia~4 df.re~5
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
## 1 0.450 0.418 16.9 13.9 0.00167 1 -79.6 165. 168. 4852. 17
## # ... with 1 more variable: nobs <int>, and abbreviated variable names
## # 1: r.squared, 2: adj.r.squared, 3: statistic, 4: deviance, 5: df.residual
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Is R-squared useful?
• Can be very misleading. Each of these samples have the same

R2 even though they are vastly different:
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Overfitting

• In-sample fit: how well your model predicts the data used to
estimate it

• R2 is a measure of in-sample fit

• Out-of-sample fit: how well your model predicts new data

• Overfitting: OLS optimizes in-sample fit; may do poorly out
of sample

• Example: predicting winner of Democratic presidential primary
with gender of the candidate

• Until 2016, gender was a perfect predictor of who wins the
primary

• Prediction for 2016 based on this: Bernie Sanders as Dem.
nominee

• Bad out-of-sample prediction due to overfitting
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2. Multiple regression
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Multiple predictors

What if we want to predict Y as a function of many variables?

seat_changei = α + β1approvali + β2rdi_changei + εi

Why?

• Better predictions (at least in-sample)

• Better interpretation as ceteris paribus relationships:
• β1 is the relationship between approval and seat_change

holding rdi_change constant
• Statistical control in a cross-sectional study
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Multiple regression in R

mult.fit <- lm(seat_change ~ approval + rdi_change, data = midterms)
mult.fit

##
## Call:
## lm(formula = seat_change ~ approval + rdi_change, data = midterms)
##
## Coefficients:
## (Intercept) approval rdi_change
## -117.226 1.526 3.217

• α̂ = −117.2: average seat change president has 0% approval and no change in
income levels

• β̂1 = 1.53 average increase in seat change for additional percentage point of
approval, holding RDI change fixed

• β̂2 = 3.217: average increase in seat for each additional percentage point increase
of RDI, holding approval fixed
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Least squares with multiple regression

• How do we estimate the coefficients?

• The same exact way as before: minimize prediction error!

• Residuals (aka prediction error) with multiple predictors:

Yi − Ŷi = seat_changei − α̂ − β̂1approvali − β̂2rdi_changei

• Find the coefficients that minimizes the sum of the squared
residuals:

SSR =
n∑

i=1
ε̂2
i = (Yi − α̂ − β̂1Xi ,1 − β̂2Xi ,2)2
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Yi − Ŷi = seat_changei − α̂ − β̂1approvali − β̂2rdi_changei

• Find the coefficients that minimizes the sum of the squared
residuals:

SSR =
n∑

i=1
ε̂2
i = (Yi − α̂ − β̂1Xi ,1 − β̂2Xi ,2)2

21 / 41



Least squares with multiple regression

• How do we estimate the coefficients?

• The same exact way as before: minimize prediction error!

• Residuals (aka prediction error) with multiple predictors:
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Model fit with multiple predictors

• R2 mechanically increases when you add a variable to the
regression

• But this could be overfitting!!

• Solution: penalize regression models with more variables

• Occam’s razor: simpler models are preferred

• Adjusted R2: lowers regular R2 for each additional covariate

• If the added covariate doesn’t help predict, adjusted R2 goes
down
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Comparing model fits

glance(fit.app) |>
select(r.squared, adj.r.squared)

## # A tibble: 1 x 2
## r.squared adj.r.squared
## <dbl> <dbl>
## 1 0.450 0.418
glance(mult.fit) |>

select(r.squared, adj.r.squared)

## # A tibble: 1 x 2
## r.squared adj.r.squared
## <dbl> <dbl>
## 1 0.468 0.397
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Predicted values from R

We could plug in values into the equation, but R can do this for us.
The {modelr} package gives some functions that allow us to
predictions in a tidy way:
Let’s use add_predictions() to predict the 2022 results
library(modelr)

##
## Attaching package: 'modelr'

## The following object is masked from 'package:broom':
##
## bootstrap
midterms |>

filter(year == 2022) |>
add_predictions(mult.fit)

## # A tibble: 1 x 7
## year president party approval seat_change rdi_change pred
## <dbl> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 2022 Biden D 42 NA -0.003 -53.2
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Predictions from several models

The gather_predictions() will return one row for each model
passed to it with the prediction for that model:
midterms |>

filter(year == 2022) |>
gather_predictions(fit.app, mult.fit)

## # A tibble: 2 x 8
## model year president party approval seat_change rdi_change pred
## <chr> <dbl> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 fit.app 2022 Biden D 42 NA -0.003 -36.9
## 2 mult.fit 2022 Biden D 42 NA -0.003 -53.2
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Predictions from new data

What about predicted values not in data?
tibble(approval = c(50, 75), rdi_change = 0) |>

gather_predictions(fit.app, mult.fit)

## # A tibble: 4 x 4
## model approval rdi_change pred
## <chr> <dbl> <dbl> <dbl>
## 1 fit.app 50 0 -25.6
## 2 fit.app 75 0 9.92
## 3 mult.fit 50 0 -40.9
## 4 mult.fit 75 0 -2.79
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Predictions from augment()

We can also get predicted values from the augment() function
using the newdata argument:
newdata <- tibble(approval = c(50, 75), rdi_change = 0)

augment(mult.fit, newdata = newdata)

## # A tibble: 2 x 3
## approval rdi_change .fitted
## <dbl> <dbl> <dbl>
## 1 50 0 -40.9
## 2 75 0 -2.79
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3. Categorical independent
variables (lab session)
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Political effects of gov’t programs

• progesa: Mexican conditional cash transfer program (CCT)
from ~2000

• Welfare $$ given if kids enrolled in schools, get regular
check-ups, etc.

• Do these programs have political effects?

• Program had support from most parties

• Was implemented in a nonpartisan fashion

• Would the incumbent presidential party be rewarded?
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The data

• Randomized roll-out of the CCT program:

• treatment: receive CCT 21 months before 2000 election

• control: receive CCT 6 months before 2000 election

• Does having CCT longer mobilize voters for incumbent PRI
party?

Name Description

treatment early Progresa (1) or late Progresa (0)
pri2000s PRI votes in the 2000 election as a share of adults in

precinct
t2000 turnout in the 2000 election as share of adults in

precinct
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library(qss)
data("progresa", package = "qss")
cct <- as_tibble(progresa) |>

select(treatment, pri2000s, t2000)
cct

## # A tibble: 417 x 3
## treatment pri2000s t2000
## <int> <dbl> <dbl>
## 1 1 40.8 55.8
## 2 1 22.4 31.2
## 3 1 38.9 47.0
## 4 1 31.2 45.0
## 5 0 76.9 100
## 6 0 23.9 37.4
## 7 1 47.3 64.9
## 8 1 21.4 58.1
## 9 1 56.5 71.3
## 10 1 36.6 51.2
## # ... with 407 more rows
# If you do not have the QSS library installed,
# download the cct.cvs file from the web and use the `read_csv()` function
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Difference in means estimates

Let’s calculate difference in means (ATEs!!) for the follow two
questions.

Does CCT affect turnout?

Does CCT affect PRI (incumbent) votes?

You will be likely to need group_by, summarize, pivot_wider,
and mutate functions. Also, I promise this will be the last time that
you will be performing differences in means in this class! If you don’t
recall how to do so, consult with the topic of causality in week 3
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Binary independent variables (lecture)

Yi = α + βXiεi

• When independent variable Xi is binary:

• Intercept α̂ is the average outcome in the X = 0 group

• Slope β̂ is the difference-in-means of Y between X = 1 group
and X = 0 group

β̂ = Y treated − Y control

• If there are other independent variables, this becomes the
difference-in-means controlling for those covariates
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Linear regression for experiments (exercise)

• Under randomization, we can estimate the ATE with
regression.

Let’s run a regression model to calculate the effects of CCT on PRI
(incumbent) votes.
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Wait a second..
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Categorical variables in regression (lecture)

• We often have categorical variables:

• Race/ethnicity: white, Black, Latino, Asian
• Partisanship: Democrat, Republican, Independent

• Strategy for including in a regression: create a series of binary
variables

unit Party Democrat Republican Independent

1 Democrat 1 0 0
2 Democrat 1 0 0
3 Independent 0 0 1
4 Republican 0 1 0
...

...
...

...
...

• Then include all but one of these binary variables:
turnouti = α + β1Republicani + β2Independenti + εi
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Interpreting categorical variables

turnouti = α + β1Republicani + β2Independenti + εi

• α̂: average outcome in the omitted group/baseline
(Democrats)

• β̂: average difference between each group and the baseline
• β̂1: average difference in turnout between Republicans and

Democrats
• β̂2: average difference in turnout between Independents and

Democrats
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More lab exercise: the transphobia study

transphobia<-read_csv("data/transphobia_all.csv")

## Rows: 9110 Columns: 11
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr (3): wave, treat_ind, racename
## dbl (8): id, age, female, voted_gen_14, voted_gen_12, democrat, therm_trans,...
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
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Q1

Run a regression model of thermometer scores for transgender
people in wave 0 (baseline) on the treatment indicator (treat_ind)
and gender. Store the regression outputs into a vector (or a
variable) and then use the summary function to call the vector (or
the variable).
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Q2

Run a regression of thermometer scores for transgender people in
wave 1 (3 days) on the treatment indicator (treat_ind), political ID
(democrat), and gender (female).

Interpret the coefficients of the two variables.
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Q3

Let’s run a regression model of thermometer scores for transgender
on age, female, and democrat. What is the predicted value of
thermometer scores for transgender for 50 years old republican
female? (you can use R to do so or simply plugging the numbers
into the equation) What is the R squared? How would you interpret
it?
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