More regression, model fit, and multiple regression

Seung-Ho An, University of Arizona
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Agenda

Model fit
Multiple regression

Categorical independent variables (lab)

More lab!
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1. Model fit



Presidential popularity and the midterms

Does popularity of the president or recent changes in the economy
better predict midterm election outcomes?

Variable Description

year midterm election year

president name of president

party Democrat or Republican

approval Gallup approval rating at midterms

rdi_change % change in real disposable income over the year
before midterms

seat_change change in the number of House seats for the
president’s party
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library(TPDdata)
midterms

## # A tibble: 20 x 6
president party approval seat_change rdi_change
<dbl>

##
##
##
##
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##
##
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##
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year
<dbl>
1946
1950
1954
1958
1962
1966
1970
1974
1978
1982
1986
1990
1994
1998
2002
2006
2010
2014
2018
2022

<chr>
Truman
Truman
Eisenhower
Eisenhower
Kennedy
Johnson
Nixon
Ford
Carter
Reagan
Reagan
H.W. Bush
Clinton
Clinton
W. Bush
W. Bush
Obama
Obama
Trump
Biden

<chr>
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<dbl>

33
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61
57
61
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49
42
63
58
46
66
63
38
45
40
38
42

<dbl>
-55
-29
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.003
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Fitting the approval model

fit.app <- lm(seat_change ~ approval, midterms)
fit.app

##

## Call:

## 1m(formula = seat_change ~ approval, data = midterms)
##

## Coefficients:

## (Intercept) approval

## -96.58 1.42

Let’s write out the mathematical model together and then
interpret the coefficient!
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Fitting the approval model

fit.app <- lm(seat_change ~ approval, midterms)
fit.app

##

## Call:

## 1m(formula = seat_change ~ approval, data = midterms)
##

## Coefficients:

## (Intercept) approval

## -96.58 1.42

Let’s write out the mathematical model together and then
interpret the coefficient!

For a one-point increase in presidential approval, the predicted seat
change increases by 1.42
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Fitting the income model

Now look at the change in real disposable income as an independent
variable
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Fitting the income model

Now look at the change in real disposable income as an independent
variable

fit.rdi <- lm(seat_change ~ rdi_change, midterms)
fit.rdi

##

## Call:

## 1m(formula = seat_change ~ rdi_change, data = midterms)
##

## Coefficients:

## (Intercept) rdi_change
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Fitting the income model

Now look at the change in real disposable income as an independent
variable

fit.rdi <- lm(seat_change ~ rdi_change, midterms)
fit.rdi

##

## Call:

## 1m(formula = seat_change ~ rdi_change, data = midterms)
##

## Coefficients:

## (Intercept) rdi_change

## -29.413 1.215

For a one point increase in the change in real disposable income, the
predicted seat change increases by 1.21.
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Approval RDI Change
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Change in President's Party House Seats
.

Change in President's Party House Seats
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Change in Read Disposable Income
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Presidential Approval

How well do the models “fit the data”?

® How well does the model predict the outcome variable in the

data?
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Model fit

Model prediction error:
n

prediction error = Z(actual; — predicted;)?
i=1
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prediction error = Z(actual; — predicted;)?
i=1
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SSR =Y (¥i — Vi)’
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Model fit

Model prediction error:

n
prediction error = Z(actual; — predicted;)?
i=1

Prediction error for regression: Sum of squared residuals
n ~
SSR =Y (¥i — Vi)’
i=1

Lower SSR is better, right?
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These two regression lines have approximately the same SSR:
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Benchmarking model fit

Benchmarking our prediction using the proportional reduction in error:

reduction in prediction error using model

baseline prediction error

11/41



Benchmarking model fit
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Baseline prediction error without a regression is using the mean of Y to
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Benchmarking model fit

Benchmarking our prediction using the proportional reduction in error:

reduction in prediction error using model

baseline prediction error

Baseline prediction error without a regression is using the mean of Y to
predict. This is called the total sum of squares:

7SS = zn:(v,- -Y)?

i=1

Leads to the coefficient of determination, R?, one summary of LS
model fit:

_ TSS -SSR how much smaller LS prediction errors are vs mean

R2
TSS prediction error using the mean
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Change in President's Party House Seats
| \

Deviations from the mean

Total SS vs. SSR

Qo 6o
Presidential Approval
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Change in President's Party House Seats

Total SS vs. SSR

Residuals

Presidential Approval
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Model fit in R

® To access R? from the Im() output, use the summary()
function:

fit.app.sum <- summary(fit.app)
fit.app.sum$r.squared
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Model fit in R

® To access R? from the Im() output, use the summary()
function:

fit.app.sum <- summary(fit.app)
fit.app.sum$r.squared

## [1] 0.4498696

® Compare to the fit using change in income:

fit.rdi.sum <- summary(fit.rdi)
fit.rdi.sum$r.squared

## [1] 0.01202348

Which does a better job predicting midterm election outcomes?
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Accessing model fit via broom package

We can also access summary statistics like model fit using the
glance () function from broom:

library (broom)
glance(fit.app)

## # A tibble: 1 x 12
## r.squ~1 adj.r~2 sigma stati~3 p.value df logLik AIC BIC devia~4 df.re-5

## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
## 1 0.450 0.418 16.9 13.9 0.00167 1 -79.6 165. 168. 4852. 17
## # ... with 1 more variable: nobs <int>, and abbreviated variable names

#H# # 1: r.squared, 2: adj.r.squared, 3: statistic, 4: deviance, 5: df.residual
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Is R-squared useful?

® Can be very misleading. Each of these samples have the same
R? even though they are vastly different:

12 A 12
10 10
> 8- > 8
6 4 6
4 &4

T T T T

5 10 15 5 10 15

X X

12 4 12
10 10
> 8- > 8
6 6
4 4
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Overfitting

® In-sample fit: how well your model predicts the data used to
estimate it
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Overfitting

In-sample fit: how well your model predicts the data used to
estimate it

R? is a measure of in-sample fit

Out-of-sample fit: how well your model predicts new data

Overfitting: OLS optimizes in-sample fit; may do poorly out
of sample

Example: predicting winner of Democratic presidential primary
with gender of the candidate

Until 2016, gender was a perfect predictor of who wins the
primary

Prediction for 2016 based on this: Bernie Sanders as Dem.
nominee

Bad out-of-sample prediction due to overfitting
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2. Multiple regression
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Multiple predictors

What if we want to predict Y as a function of many variables?

seat_change; = o + Srapproval; + [ordi_change; + €;
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Multiple predictors

What if we want to predict Y as a function of many variables?

seat_change; = o + Srapproval; + [ordi_change; + €;

Why?
® Better predictions (at least in-sample)

® Better interpretation as ceteris paribus relationships:

® 3, is the relationship between approval and seat_change
holding rdi_change constant

® Statistical control in a cross-sectional study
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Multiple regression in R

mult.fit <- Im(seat_change ~ approval + rdi_change, midterms)
mult.fit

#i#
## Call:

## Im(formula = seat_change ~ approval + rdi_change, data = midterms)
##

## Coefficients:
## (Intercept) approval  rdi_change
## -117.226 1.526 3.217
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Multiple regression in R

mult.fit <- Im(seat_change ~ approval + rdi_change, midterms)
mult.fit

#i#
## Call:

## Im(formula = seat_change ~ approval + rdi_change, data = midterms)
##
## Coefficients:

## (Intercept) approval rdi_change
## -117.226 1.526 3.217
o o=-117.2: average seat change president has 0% approval and no change in

income levels

. Bi = 1.53 average increase in seat change for additional percentage point of
approval, holding RDI change fixed

d ,6/’\2 = 3.217: average increase in seat for each additional percentage point increase
of RDI, holding approval fixed
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Least squares with multiple regression

® How do we estimate the coefficients?
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Least squares with multiple regression

How do we estimate the coefficients?
The same exact way as before: minimize prediction error!

Residuals (aka prediction error) with multiple predictors:
Y — \A’, = seat_change; — a — Blapproval,- — Bzrdi_change,-

Find the coefficients that minimizes the sum of the squared
residuals:

SSR = Z &2 =(Y,—a- BlXi,l — Bin,2)2
i—1
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Model fit with multiple predictors

® R? mechanically increases when you add a variable to the
regression
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Model fit with multiple predictors

R? mechanically increases when you add a variable to the
regression

But this could be overfitting!!

Solution: penalize regression models with more variables
Occam’s razor: simpler models are preferred

Adjusted R?: lowers regular R? for each additional covariate

If the added covariate doesn't help predict, adjusted R? goes
down
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Comparing model fits

glance(fit.app) [>
select(r.squared, adj.r.squared)

## # A tibble: 1 x 2

##  r.squared adj.r.squared
## <dbl> <dbl>
## 1 0.450 0.418

glance(mult.fit) |[>
select(r.squared, adj.r.squared)

## # A tibble: 1 x 2

##  r.squared adj.r.squared
## <dbl> <dbl>
## 1 0.468 0.397
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Predicted values from R

We could plug in values into the equation, but R can do this for us.

The {modelr} package gives some functions that allow us to
predictions in a tidy way:

Let's use add_predictions() to predict the 2022 results
library(modelr)

##
## Attaching package: 'modelr'’

## The following object is masked from 'package:broom':
##
## bootstrap
midterms |>
filter(year == 2022) |>
add_predictions(mult.fit)

## # A tibble: 1 x 7

## year president party approval seat_change rdi_change pred
## <dbl> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 2022 Biden D 42 NA -0.003 -53.2
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Predictions from several models

The gather_predictions() will return one row for each model
passed to it with the prediction for that model:
midterms |>

filter(year == 2022) |>

gather_predictions(fit.app, mult.fit)

## # A tibble: 2 x 8

##  model year president party approval seat_change rdi_change pred
## <chr> <dbl> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 fit.app 2022 Biden D 42 NA -0.003 -36.9
## 2 mult.fit 2022 Biden D 42 NA -0.003 -53.2
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Predictions from new data

What about predicted values not in data?

tibble( c(50, 75), 0 I>
gather_predictions(fit.app, mult.fit)

## # A tibble: 4 x 4
##  model approval rdi_change  pred

##  <chr> <dbl> <dbl> <dbl>
## 1 fit.app 50 0 -25.6
## 2 fit.app 75 0 9.92
## 3 mult.fit 50 0 -40.9
## 4 mult.fit 75 0 -2.79
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Predictions from augment ()

We can also get predicted values from the augment () function
using the newdata argument:

newdata <- tibble( c(50, 75), 0)

augment (mult.fit, newdata)

## # A tibble: 2 x 3

##  approval rdi_change .fitted
## <dbl> <dbl> <dbl>
## 1 50 0 -40.9
## 2 75 0 -2.79
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3. Categorical independent
variables (lab session)



Political effects of gov't programs

® progesa: Mexican conditional cash transfer program (CCT)
from ~2000
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Political effects of gov't programs

progesa: Mexican conditional cash transfer program (CCT)
from ~2000

Welfare $$ given if kids enrolled in schools, get regular
check-ups, etc.

Do these programs have political effects?
Program had support from most parties
Was implemented in a nonpartisan fashion

Would the incumbent presidential party be rewarded?
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The data

® Randomized roll-out of the CCT program:
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The data
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The data

Randomized roll-out of the CCT program:

treatment: receive CCT 21 months before 2000 election

control: receive CCT 6 months before 2000 election

® Does having CCT longer mobilize voters for incumbent PRI
party?

Name Description

treatment  early Progresa (1) or late Progresa (0)

pri2000s PRI votes in the 2000 election as a share of adults in
precinct

t2000 turnout in the 2000 election as share of adults in
precinct
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library(qss)

data("progresa",
cct <- as_tibble(progresa) |>
select(treatment, pri2000s, t2000)

cct

## # A tibble:
treatment pri2000s

##
##
#t
##
#it
##
##
##
##
##
##
## 10

© 0 NO Ok WN -

#H # ...

<int>
1
1
1
1
0
0
1
1
1

1

417 x 3

”qSS”)

£2000
<dbl> <dbl>
40.8 55.8
22.4 31.2
38.9 47.0
31.2 45.0
76.9 100
23.9 37.4
47.3 64.9
21.4 58.1
56.5 71.3
36.6 51.2

rows

with 407 more
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Difference in means estimates

Let's calculate difference in means (ATEs!!) for the follow two
questions.

Does CCT affect turnout?
Does CCT affect PRI (incumbent) votes?

You will be likely to need group_by, summarize, pivot_wider,
and mutate functions. Also, | promise this will be the last time that
you will be performing differences in means in this class! If you don't
recall how to do so, consult with the topic of causality in week 3
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Binary independent variables (lecture)

Yi = a+ BXie;
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Binary independent variables (lecture)

Yi = a+ BXe€;

® When independent variable X; is binary:
® Intercept @ is the average outcome in the X = 0 group
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Binary independent variables (lecture)

Yi = a+ BXe€;

When independent variable X; is binary:
Intercept & is the average outcome in the X = 0 group

Slope B is the difference-in-means of Y between X = 1 group
and X = 0 group

5 = Ytreated - Ycontrol

If there are other independent variables, this becomes the
difference-in-means controlling for those covariates
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Linear regression for experiments (exercise)

® Under randomization, we can estimate the ATE with
regression.

Let’s run a regression model to calculate the effects of CCT on PRI
(incumbent) votes.
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Wait a second..
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Categorical variables in regression (lecture)

® \We often have categorical variables:
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® \We often have categorical variables:
® Race/ethnicity: white, Black, Latino, Asian
® Partisanship: Democrat, Republican, Independent

® Strategy for including in a regression: create a series of binary

Categorical variables in regression (lecture)

variables
unit  Party Democrat Republican Independent
1 Democrat 1 0 0
2 Democrat 1 0 0
3 Independent 0 0 1
4 0 1 0

Republican

® Then include all but one of these binary variables:

turnout; = a + P1Republican; + BaIndependent; + ¢;
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Interpreting categorical variables

turnout; = o + [1Republican; + faIndependent; + ¢;

® a: average outcome in the omitted group/baseline
(Democrats)
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turnout; = o + [1Republican; + faIndependent; + ¢;

® a: average outcome in the omitted group/baseline
(Democrats)
° B: average difference between each group and the baseline
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More lab exercise: the transphobia study

transphobia<-read_csv("data/transphobia_all.csv'")

##
##
##
##
##
##
#t
##

Rows: 9110 Columns: 11

-- Column specification --—————-———————————————————————
Delimiter: ","

chr (3): wave, treat_ind, racename

dbl (8): id, age, female, voted_gen_14, voted_gen_12, d.

i Use “spec()” to retrieve the full column specificatio:
i Specify the column types or set “show_col_types = FAL
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Q1

Run a regression model of thermometer scores for transgender
people in wave 0 (baseline) on the treatment indicator (treat_ind)
and gender. Store the regression outputs into a vector (or a
variable) and then use the summary function to call the vector (or

the variable).
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Q2

Run a regression of thermometer scores for transgender people in
wave 1 (3 days) on the treatment indicator (treat_ind), political ID
(democrat), and gender (female).

Interpret the coefficients of the two variables.
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Q3

Let's run a regression model of thermometer scores for transgender
on age, female, and democrat. What is the predicted value of
thermometer scores for transgender for 50 years old republican
female? (you can use R to do so or simply plugging the numbers
into the equation) What is the R squared? How would you interpret
it?
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