Prediction, iteration, and regression

Seung-Ho An, University of Arizona

1/75

Prediction

Loops

Evaluating the predictions
Time-series plot
Prediction (again)
Modeling with a line

Linear regression in R

Agenda

2/75

1. Prediction

2016 US Presidential Election

2016 election popular vote
¢ Clinton: 65,853,516 (48.2%)
® Trump: 62,984,825 (46.1%)
Why did Trump win? Electoral college
® Trump: 304, Clinton: 227
Election determined by 77,744 votes (margins in WI, MI, and PA)
® 0.056% of the electorate (~136 million)

4/75

Predicting US Presidential Election

Electoral college system
® Must win an absolute majority of 538 electoral votes

® 538 = 435 (House of Representatives) + 100 (Senators) + 3
(DC)

® Must win at least 270 votes
® Nobody wins an absolute majority ~~ House vote

Must predict winner of each state

5/75

Prediction strategy

Predict state-level support for each candidate using polls
Allocate electoral college votes of that state to its predicted winner
Aggregate EC votes across states to determine the predicted winner
Coding strategy:

® For each state, subset to polls within that state

® Further subset the latest polls

® Average the latest polls to estimate support for each candidate

® Allocate the electoral votes to the candidate who has greatest
support

® Repeat this for all states and aggregate the electoral votes

Sounds like a lot of subsets :(

6/75

2. Loop

What if we wanted to know the number of unique values of each

column of the cces_2020 data?

library(TPDdata)
cces_2020

A tibble:

##
##
##
##
##
##
##
##
##
##

gender
<fct>
Male
Female
Female
Female
Male
Male
Male
Female
Female
Female

race
<fct>
White
White
White
White
White
White
Black
White
White
White

51,551 x 6

educ

<fct>

2-year
Post-grad
4-year
4-year
4-year

Some college
Some college
Some college
High school graduate
4-year

. with 51,541 more rows

pid3

<fct>
Republican
Democrat
Independent
Democrat
Independent
Republican
Not sure
Independent
Republican
Democrat

<dbl

N.

N,

turnout_self

>

R

A

[SJTSNNINYINN

R

A simple example

pres_vote
<fct>
Donald J.
<NA>
Joe Biden
Joe Biden
Other
Donald J.
<NA>
Donald J.
Donald J.
Joe Biden

Trump (~

(Democr~
(Democr~

Trump (~
Trump (~

Trump (~
(Democr~

8/75

Manually changing values

length(unique (cces_2020$gender))

[1] 2
length(unique (cces_2020$race))

[1] 8
length(unique (cces_2020$educ))

[1] 6
length(unique (cces_2020$pid3))

[1] 5
length(unique (cces_2020$turnout_self))

[1] 3
length(unique(cces_2020$pres_vote))

[11 7

9/75

Note tat we can also access
unique (cces_2020$gender)

[1] Male Female
Levels: Male Female skipped

unique(cces_2020[[1]])

[1] Male Female
Levels: Male Female skipped

unique (cces_2020$pid3)

[1] Republican Democrat
Levels: Democrat Republican

unique (cces_2020[[4]]1)

[1] Republican Democrat
Levels: Democrat Republican

Subsetting with brackets

variables with [[1]:

not asked

not asked

Independent Not sure Other
Independent Other Not sure skipped not asked

Independent Not sure Other
Independent Other Not sure skipped not asked

10/75

Manually changing values, alternative

unique(cces_2020[[1]])

[1] Male Female
Levels: Male Female skipped not asked

unique(cces_2020[[2]])

[1] White Black Other Hispanic
[6] Two or more races Asian Middle Eastern Native American
10 Levels: White Black Hispanic Asian Native American ... not asked

unique (cces_2020[[3]])

[1] 2-year Post-grad 4-year
[4] Some college High school graduate No HS
8 Levels: No HS High school graduate Some college 2-year 4-year ... not aske

unique(cces_2020[[4]])

[1] Republican Democrat Independent Not sure Other
Levels: Democrat Republican Independent Other Not sure skipped not asked

unique(cces_2020[[5]]1)

[1] 1 NA O
unique(cces_2020[[6]])
11/75

Recognizing the template

What if you had more values? Not efficient!
Recognize the template:

length(unique(cces_2020[[<<column number>>]]))

Can we give R this template and a set of column numbers have it
do our task repeatedly?

12/75

Loops in R

for loop provides a way to execute these templates multiple times:

output <- rep(NA, ncol(cces_2020)) # 1. output

for (i in seq_along(cces_2020)) { # 2. sequence
output[i] <- length(unique(cces_2020[[1i]1])) # 3. body

}

output

[11 286 537
® Elements of a loop:
@ output: vector to hold the
@® i: placeholder name we'll use to swap values between iterations

© seq_along(cces_2020): vector of values we want the
placeholder to take

@ bvody: a set of expressions that will be repeatedly evaluated

@ {}: curly braces to define beginning and end of the loop

® |ndentation is important for readability of the code

13/75

Election data: pres20

2020 polling prediction

Variable

Description

state
biden
trump
ev

abbreviated name of state

Biden's vote share (percentage)

Trump's vote share (percentage)

number of electoral college votes for the state

Polling data: pol1ls20

Variable Description

state state in which poll was conducted

end_date end date the period when poll was conducted
daysleft number of days between end date and election date
pollster name of organization conducting poll

sample_size number of samples for each poll conducted

biden predicted support for Biden (percentage)

trump predicted support for Trump (percentage)

14/75

library(TPDdata)
calculate Trump's margin of wvictory
polls20 <- polls20 |>

mutate (biden - trump)

pres20 <- pres20 |>
mutate (biden - trump)

glimpse (pol1s20)

Rows: 2,445
Columns: 8

$ end_date <date> 2020-11-02, 2020-11-02, 2020-11-02, 2020-

$ state <chr> "FL", "PA", "FL", "FL", "NV", "GA", "SC",
¢ days_left <dbl> 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1,
$ pollster <chr> "The Political Matrix/The Listener Group",
$ sample_size <dbl> 966, 499, 400, 1054, 1024, 1041, 817, 920,
$ biden <dbl> 44.2, 48.4, 47.0, 47.3, 48.4, 45.4, 39.0,
$ trump <dbl> 48.0, 49.2, 48.2, 49.4, 49.1, 49.7, 51.4,
$ margin <dbl> -3.8, -0.8, -1.2, -2.1, -0.7, -4.3, -12.4,

Some preprocessing

11-02, 2020-11-0~
"MT", "ME", "AZ"~
1, 1, 1, 1, 1, 1~
"Susquehanna", ~
1024, 610, 1261~
45.0, 52.0, 50.0~
50.0, 40.0, 47.5~
-5.0, 12.0, 2.5~

15/75

Reminder of our goal

® Coding strategy:
@ For each state, subset to polls within that state
@® Further subset the latest polls
© Average the latest polls to estimate support for each candidate

@ Allocate the electoral votes to the candidate who has greatest
support

@ Repeat this for all states and aggregate the electoral votes

16/75

Poll prediction for each state

poll_pred <- rep(NA, 51) # place holder

get list of unique state names to iterate over
state_names <- sort(unique(polls20$state))

add labels to holder
names (poll_pred) <- state_names

for (i in 1:51) {
state_data <- subset(polls20, (state == state_names[i]))

latest <- state_data$days_left == min(state_data$days_left)
poll_pred[i] <- mean(state_data$margin[latest])

}
head(poll_pred)

AK AL AR Az CA Cco
-9.00 -26.00 -23.00 4.25 26.00 11.00

17/75

Tidyverse alternative version

poll_pred <- polls20 |>
group_by (state) |>
filter(days_left == min(days_left)) |>
summarize (mean (margin))
poll_pred

A tibble: 51 x 2
state margin_pred

##
##
##
##
##
##
##
##
##
##
##
10

© 00N U WN -

<chr> <dbl>
AK -9

AL -26

AR -23

AZ 4.25
CA 26

co 11

CT 22

DC 89

DE 22

FL 0.0800

...

with 41 more rows

18/75

3. Evaluating the
predictions

Polling errors

Prediction error = actual outcome - predicted outcome

poll_pred <- poll_pred |>
left_join(pres20) |>

mutate (

margin - margin_pred)

Joining with “by = join_by(state)"

poll_pred

A tibble: 51 x 8

##
##
##
##
##
##
##
##
##
##
##
10

© 00N U WN -

state margin_pred ev biden
<chr> <dbl> <dbl> <dbl>
AK -9 3 42.8
AL -26 9 36.6
AR -23 6 34.8
AZ 4.25 11 49.4
CA 26 55 63.5
co 11 9 55.0
CT 22 7 59.3
DC 89 3 92.1
DE 22 3 58.7
FL 0.0800 29 47.9

#Ho# ...

with 41 more rows

trump
<dbl>

52.
62.
62.
49.
34.
41.
39.

5.
39.
51.

8

N O W DO

(o)

other margin
<dbl> <dbl>
0.732 -10.1
0.699 -25.5
0.257 -27.6
0.263 0.309
0.244 29.2
0.161 13.4
0.129 20.1
0.491 86.8
0.0780 19.0
0.0835 -3.36

errors
<dbl>

-1.

06

.538
.62
.94
.16
.41
.93
.25
.03
.44

20/75

Assessing the prediction error

Bias: average prediction error

mean (poll_pred$errors)

[1] -3.983248

Root mean-square error: average magnitude of the prediction
error

sqrt (mean(poll_pred$errors~2))

[1] 6.06975

21/75

Histogram of the errors

ggplot(poll_pred, aes(x = errors)) +
geom_histogram() +
labs(
x = "Prediction error for Biden's margin of victory"

22/75

“stat_bin()" using “bins = 30" . Pick better value with

count

2-

0-

-15 -10 -5 0 5
Prediction error for Biden's margin of victory

23/75

Comparing polls to outcome

Sometimes we want plot text labels instead of point and we use
geom_text and the label aesthetic:

merge the actual results
ggplot (poll_pred, aes(margin_pred, y=margin)) +

geom_text (aes(state)) +
geom_abline(0, 1, 2) +
geom_hline(0, "grey50") +

geom_vline(0, "grey50")

24/75

Classification

Election prediction: need to predict winner in each state:

poll_pred |>
filter(margin > 0) |>
summarize (sum(ev)) |>
pull()

[1] 306

poll_pred |>
filter(margin_pred > 0) |>
summarize (sum(ev)) [>
pull()

[1] 328

25/75

Classification problem

® Prediction of binary outcome variable = classification
problem

® Wrong prediction &~ misclassification
@ true positive: predict Trump wins when he actually wins
@® false positive: predict Trump wins when he actually loses

© true negative: predict Trump loses when he actually loses

O false negative: predict Trump loses when he actually wins

® Sometimes false negatives are more/less important: e.g. civil
war

26 /75

Classification based on polls

Accuracy: sign() returns 1 for a positive number, -1 for a negative
number, and 0 for 0

poll_pred |>
summarize (mean(sign(margin_pred) == sign(margin))) |>
pull()

[1] 0.9215686
Which states did polls call wrong?
poll_pred |>

filter(sign(margin_pred) != sign(margin))

A tibble: 4 x 8

state margin_pred ev biden trump other margin errors
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 FL 0.0800 29 47.9 51.2 0.0835 -3.36 -3.44
2 GA -1.15 16 49.5 49.2 0.0759 0.236 1.39
3 NC 3.95 15 48.6 49.9 0.296 -1.35 -5.30
4 NV -0.350 6 50.1 47.7 0.759 2.39 2.74

27/ 75

4. Time-series plot

28/75

We often want to show a time series
get a sense of the popular vote:

national_polls20

A tibble: 654 x 5
end_date pollster
<date> <chr>

1 2020-11-03 Lake Research 2400
2 2020-11-02 Research Co. 1025
3 2020-11-02 YouGov 1363
4 2020-11-02 Ipsos 914
5 2020-11-02 SurveyMonkey 28240
6 2020-11-02 HarrisX 2297
7 2020-11-02 TIPP 1212
8 2020-11-02 USC Dormsife 5423
9 2020-11-01 John Zogby Strategies/EMI Research Solutions 1008
10 2020-11-01 Swayable 5174
... with 644 more rows, and abbreviated variable name 1: sample_size

of the national-level polls to

National polls

sample_~1 biden trump
<dbl> <dbl> <dbl>

51
50
53
52
52
52

50.
B3.
49.
51.

o © B

48
42
43
45
46
48

46.
42.

43

46.

= os o

29/75

Plotting the raw results

national_polls20 |[>
ggplot(aes(x = end_date)) +
geom_point(aes(y = biden), color = "steelbluel") +
geom_point(aes(y = trump), color = "indianredl")

30/75

Plotting the raw results

Fairly messy:

. . .
. . ° .
55-
.‘:’
i . . -.. 9 . D o el
e % ° & S o o P S T &= E B
. o o '-"" e .-
- s, 0o 5T -, o Gogeq 9oSes’s o0 “Bgioeb '.p,.o.o"’ =
o COMD) S N o o, o ¢
A Y L:-... .-—-—.:'—.-l.:--—-l W._:._...:...
. . . .
50- o0 %o0000 & oosossses o 000 © 000 ssosss o0 3 oves e o . e o o o o woes -u'.... u‘-.:-
o .

biden

45-

40-

end_date 31 / 75

Clean the mess by taking moving averages

Goal: plot the average of polls in the last 7 days (very difficult with
dplyr)
Loop over each day in the data and do:

@ subset to all polls in the previous 7 days of that day

® calculate the average of these polls for Biden and Trump

© save the results as a 1-row tibble

32/75

Dates in R

You can get R to properly understand dates and do arithmetic with
them:

head(national_polls20$end_date)

[1] "2020-11-03" "2020-11-02" "2020-11-02" "2020-11-02" "2020-11-02"
[6] "2020-11-02"

head(national_polls20$end_date+3)

[1] "2020-11-06" "2020-11-05" "2020-11-05" "2020-11-05" "2020-11-05"
[6] "2020-11-05"

33/75

Lubridate to create dates

We can convert a string to a date using the lubridate package:
"2020-11-03" + 3 ## R doesn't know this is a date yet!

Error in "2020-11-03" + 3: non-numeric argument to binary operator
lubridate: :ymd("2020-11-03") + 3

[1] "2020-11-06"
lubridate::mdy("11/03/2020") + 3

[1] "2020-11-06"

34/75

Getting a vector of dates

Setup the vector of dates to cover:

election_day <- lubridate::ymd("2020-11-03")

all_dates <- seq(min(national_polls20$end_date) +1,
election_day,
"days")

head(all_dates)

[1] "2020-06-03" "2020-06-04" "2020-06-05" "2020-06-06" "2020-06-07"
[6] "2020-06-08"

35/75

Moving window loop

output <-vector("list", length(all_dates))
for (i in seq_along(all_dates)) {
this_date <- all_dates[[i]]

this_week <- national_polls20 |>

filter(
this_date - end_date >= 0, # this_date is after end_date
this_date - end_date < 7 # within a week

)

output [[1]] <- this_week |>
summarize (

this_date,
mean(biden, TRUE) ,
mean (trump, TRUE)

}
output <- bind_rows(output)

36/75

Result

output

[11 286 537

37/75

output [>
ggplot(aes(x = date)) +
geom_point (aes(y = biden), color = "steelbluel") +
geom_point(aes(y = trump), color = "indianredl") +

geom_vline(xintercept = election_day) +
geom_point (aes(x = election_day, y = 51.3), color
geom_point(aes(x = election_day, y = 46.9), color
labs(

x = "Date",

y = "Predicted Vote Percentage"

)

Let's plot

"steelbluel", size
"indianredl", size

5) +
= B) +

38/75

Let's plot

525- ;..\.
-~ -~ P S
fO. AL ~ N g, ®
\ w-
o 500- *
[=)
ol
?_):’ -
s
o 475
S o
kel
2
°
o
£ 4so0-
.'o ’ (F .“o Q\J
-~ o ’MMM |
4257 S Sy qos
L]
Jun Jul Aug Sep Oct Nov

Date

39/75

Prediction (again)

Predicting weight

Predicting weight with activity: health data

Variable Description

date date of measurements
active__calories calories burned

steps number of steps taken (in, 1,000s)
weight weight (Ibs)

steps_lag steps on day before (in 1,000s)
calories_lag calories burned on day before

41/75

Predicting using bivariate relationship

® Goal: what's our best guess about Y; if we know what X; is?

® What's our best guess about one's weight this morning? Would
it be helpful if we know how many steps she/he took yesterday?

® Terminology:

® Dependent/outcome variable: what we want to predict
(weight)

* Independent/explanatory variable: what we are using to
predict (steps)

42/75

Weight data

® | oad the data:

library(TPDdata)
health <- drop_na(health)

® Plot the data:

ggplot (health, aes(x = steps_lag, y = weight)) +

geom_point(color = "steelbluel") +
labs(
x = "Steps on day prior (in 1000s)"
y = "Weight",

title = "Weight and Steps"
)

43/75

Weight

175~

170~

165~

160~

155-

Weight and Steps

10

15
Steps on day prior (in 1000s)

4475

Prediction on variable with another

® Prediction with access to just Y: average of the Y values

® Prediction with another variable: for any value of X, what's the
best guess about Y?

® Need a function y = f{x) that maps values of X into predictions

® Machine learning: fancy ways to determine f{x)

® Example: what if did 5,000 steps today? What's my best guess
about weight?

4575

Let's find all values that round to 5,000 steps:

health [>
filter(round(steps_lag) == 5)

A tibble:

##
##
##
##
##
##
##
##
##
##
##
10
11
12

© 00 N U WN -

date
<date>
2015-09-08
2015-12-12
2015-12-28
2016-01-29
2016-02-14
2016-02-15
2016-05-02
2016-06-27
2016-07-22
2016-11-25
2016-11-28
2016-12-30

Start with looking at a narrow strip of X

12 x 6

active_calories
<dbl>
1111.
728.
430.
475.
264.
892.
627.
352.
766.
452
577.
621.

steps weight steps_lag calorie_lag

<dbl>

15.
14.
8.
8.
5.
13.
11.

7

14.

9.
11.
12.

2

<dbl>
169.
167.
170.
171.
172.
171.
170.
169.
167.
173.
171.
176.

<dbl>

5.
.36
.19
.95
.86
.42
.04
.93
.96
.26
.97
.42

[e S e I I A

02

<dbl>
410.
259.
314
314.
297.
264.
283.
212.
251.
295
304.
371.

4675

Best guess about Y for this X

Best prediction about weight for a step count of roughly 5,000 is
the average weight for observations around that value:

mean_wt_b5k_steps <- health |>
filter(round(steps_lag) == 5) |[>
summarize (mean(weight)) |>
pull()

mean_wt_bk_steps

[1] 170.5333

4775

Plotting the best guess

ggplot (health, aes(x = steps_lag, y = weight)) +
geom_point(color = "steelbluel", alpha = 0.5) +
labs(
x = "Steps on day prior (in 1000s)",
y = "Weight",
title = "Weight and Steps") +
geom_vline(xintercept = c(4.5, 5.5), linetype = "dashed") +
geom_point(aes(x = 5, y = mean_wt_bk_steps), color = "indianredl",
size = 3)

48/75

Weight and Steps

15
Steps on day prior (in 1000s)

Binned means

We can use a stat_summary_bin() to add these binned means all
over the scatter plot:

ggplot (health, aes(x = steps_lag, y = weight)) +
geom_point(color = "steelbluel", alpha = 0.25) +

labs(
x = "Steps on day prior (in 1000s)",
y= "Weight",
title = "Weight and Steps"
) +
stat_summary_bin(fun = "mean", color = "indianredl", size = 3,

geom = "point", bandwidth = 1)

50,75

Weight and Steps

10

15
Steps on day prior (in 1000s)

Smaller bins

But what happens when we make the bins too small?
ggplot (health, aes(x = steps_lag, y = weight)) +

geom_point(color = "steelbluel", alpha = 0.25) +
labs(
x = "Steps on day prior (in 1000s)",
y= "Weight",
title = "Weight and Steps"
)+
stat_summary_bin(fun = "mean", color = "indianredl", size = 3,

geom = "point", bandwidth = 0.5) +

geom_vline(xintercept = ¢(2.5, 3, 23, 23.5), linetype = "dashed")

52/75

Gaps and bumps:

Weight and Steps

°
°
°
-8
[]
°
[]
o
°
°
° -
9
[]
[
[]
°
°
)
[] =l
o
°
)
]
(]
°
- "
[
°
rrrrrrrrrrrrrrrrrrr)
g g 8 g 8
WBoMm

Steps on day prior (in 1000s)

53/75

Modeling with a line

Using a line to predict

® Can we smooth out these binned means and close gaps? A
model

® Simplest possible way to relate two variables: a line

y=mx+b

® Problem: for any line we draw, not all the data is on the line
® Some points will be above the line, some below

® Need a way to account for chance variation away from the line

55 /75

Linear regression model

Model for the line of best fit:

. ~~
intercept gjope error term

Coefficients/parameters («, 3): true unknown
intercept/slope of the line of best fit

Chance error ¢;: accounts for the fact that the line doesn't
perfectly fit the data

® Each observation allowed to be off the regression line

® Chance errors are 0 on average

Useful fiction: this model represents the data generating
process

® George Box (British statistician): “all models are wrong,
some are useful”’ 56 /75

Interpreting the regression line

Yi=a+ (- Xite

® Intercept «: average value of Y when X is 0

® Average weight when | take O steps the day prior
® Slope 3: average change in Y when X increases by one unit

® Average decrease in weight for each additional 1,000 steps

57/75

Estimated coefficients

® Parameters: «, 8

® Unknown features of the data-generating process

® Chance error makes these impossible to observe directly
® Estimates: 64,3

® An estimate is our best guess about some parameter
® Regression line: Y=a+ B - X

® Average value of Y when X is equal to x

® Represents the best guess of predicted value of the outcome
at x

58 /75

line of best fit

ggplot (health, aes(x = steps_lag, y = weight)) +
geom_point(color = "steelbluel") +
labs(
x = "Steps on day prior (in 1000s)",
y = "Weight",
title = "Weight and Steps")+
geom_smooth(method = "lm", se = FALSE, color = "indianredl", size = 1.5)

59/75

Line of best fit

Weight and Steps

. o -
. Py o
. . .
175- — — —
170-
£
k-3
Q
=
165~
160~
155~ .

5 10 15 20 25
Steps on day prior (in 1000s)

60 /75

Why not this line?
Weight and Steps

Weight

5 10 15
Steps on day prior (in 1000s)

61/75

Prediction error

Let's understand the prediction error for a line with intercept a
and slope b
Fitted/predicted value for unit /.

at+b-X

Prediction error (residual):

error = actual — predicted = Y; — (a+ b - X;)

62/75

Prediction errors/residuals

Weight and Steps

175 -

positive

170 -

= 165-

negative

160 -

155 -

30

63/75

Steps on day prior (in 1000s)

Least squares

® Get these estimates by the least squares methods

® Minimize the sum of the squared residuals (SSR):
SSR = Z(prediction error;)® = Z(Y, —a—b-X)?

i=1 i=1

® Finds the line that minimizes the magnitude of the prediction
errors!

64/75

Linear regression in R

65/75

Linear regression in R

® R will calculate least squares line for a data set using Im()
® Syntax: Im(y x, data = mydata)
® vy is the name of the dependent variable
® X is the name of the independent variable

® mydata is the data.frame where they live

fit <- Im(weight ~ steps_lag, health)
fit

##

Call:

1lm(formula = weight ~ steps_lag, data = health)
##

Coefficients:

(Intercept) steps_lag

#i# 170.6750 -0.2308

66 /75

Coefficients

use coef () to extract estimated coefficients:

coef (fit)

(Intercept) steps_lag
170.6749706 -0.2307681

Interpretation: a 1-unit increase in X (1,000 steps) is associated
with a decrease in the average weight of 0.231 pounds

Question: what would this model predict about the change in
average weight for a 10,000 step increase in steps?

67/75

broom package

The broom package can provide nice summaries of the regression
output

augment () can show fitted values, residuals and other unit-level
statistics:

library(broom)
augment (fit) [>
head ()

A tibble: 6 x 8

weight steps_lag .fitted .resid .hat .sigma .cooksd .std.resid
#it <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 169. 17.5 167. 2.46 0.00369 4.68 0.000513 0.526
2 168 18.4 166. 1.57 0.00463 4.68 0.000264 0.337
3 167. 19.6 166. 1.05 0.00609 4.68 0.000154 0.224
4 168. 10.4 168. -0.0750 0.00217 4.68 0.000000280 -0.0160
5 168. 18.7 166. 1.44 0.00496 4.68 0.000238 0.309
6 166. 9.14 169. -2.27 0.00296 4.68 0.000349 -0.485

68/75

Properties of least squares

Least squares line always goes through (X, Y)
ggplot (health, aes(x = steps_lag, y = weight)) +

geom_point(color = "steelbluel") +
labs (
x = "Steps on day prior (in 1000s)",
y = "Weight",

title = "Weight and Steps") +

geom_hline(yintercept = mean(health$weight), linetype

= "dashed") +

geom_vline(xintercept = mean(health$steps_lag), linetype = "dashed") +
geom_smooth(method = "lm", se = FALSE, color = "indianredl", size = 1.5)

69 /75

Least squares line always goes through (X, Y)

Weight and Steps

175-

170-

Y PR

b
'
'

T

WBem

165-

160~

155-

Steps on day prior (in 1000s)

70/75

Properties of least squares line

Estimated slope is related to correlation:

A . SD of Y
B = (correlation of X and Y) X D of X

Mean of residuals is always 0

augment (fit) [|>
summarize (mean(.resid))

A tibble: 1 x 1

“mean(.resid)"
<dbl>
1 -1.21e-13

71/75

Plotting the residuals

augment (fit) |>
ggplot (aes(x = steps_lag, y = .resid)) +
geom_point(color = "steelbluel", alpha = 0.75) +
labs(
x = "Steps on day prior (in 1000s)",
y = "Residuals",
title = "Residual plot") +
geom_smooth(method = "lm", se = FALSE, color = "indianredl", size = 1.5)

72/75

Residuals

Residual plot

o

5~

-10-

15
Steps on day prior (in 1000s)

73/75

Smoothed graph of averages

Another way to think of the regression line is a smoothed version of
the binned means plot:

ggplot (health, aes(x = steps_lag, y = weight)) +
geom_point(color = "steelbluel", alpha = 0.25) +

labs(
x = "Steps on day prior (in 1000s)",
y = "Weight",
title = "Weight and Steps") +
stat_summary_bin(fun = "mean", color = "indianredl", size = 3,
geom = "point", binwidth = 1) +
geom_smooth(method = "lm", se = FALSE, color = "indianredl", size = 1)

7475

Weight and Steps

15
Steps on day prior (in 1000s)

