
Prediction, iteration, and regression

Seung-Ho An, University of Arizona

1 / 75

Agenda
Prediction

Loops

Evaluating the predictions

Time-series plot

Prediction (again)

Modeling with a line

Linear regression in R

2 / 75

1. Prediction

3 / 75

2016 US Presidential Election

2016 election popular vote

• Clinton: 65,853,516 (48.2%)

• Trump: 62,984,825 (46.1%)

Why did Trump win? Electoral college

• Trump: 304, Clinton: 227

Election determined by 77,744 votes (margins in WI, MI, and PA)

• 0.056% of the electorate (~136 million)

4 / 75

Predicting US Presidential Election

Electoral college system

• Must win an absolute majority of 538 electoral votes

• 538 = 435 (House of Representatives) + 100 (Senators) + 3
(DC)

• Must win at least 270 votes

• Nobody wins an absolute majority House vote

Must predict winner of each state

5 / 75

Prediction strategy

Predict state-level support for each candidate using polls

Allocate electoral college votes of that state to its predicted winner

Aggregate EC votes across states to determine the predicted winner

Coding strategy:

• For each state, subset to polls within that state

• Further subset the latest polls

• Average the latest polls to estimate support for each candidate

• Allocate the electoral votes to the candidate who has greatest
support

• Repeat this for all states and aggregate the electoral votes

Sounds like a lot of subsets :(

6 / 75

2. Loop

7 / 75

A simple example

What if we wanted to know the number of unique values of each
column of the cces_2020 data?
library(TPDdata)
cces_2020

A tibble: 51,551 x 6
gender race educ pid3 turnout_self pres_vote
<fct> <fct> <fct> <fct> <dbl> <fct>
1 Male White 2-year Republican 1 Donald J. Trump (~
2 Female White Post-grad Democrat NA <NA>
3 Female White 4-year Independent 1 Joe Biden (Democr~
4 Female White 4-year Democrat 1 Joe Biden (Democr~
5 Male White 4-year Independent 1 Other
6 Male White Some college Republican 1 Donald J. Trump (~
7 Male Black Some college Not sure NA <NA>
8 Female White Some college Independent 1 Donald J. Trump (~
9 Female White High school graduate Republican 1 Donald J. Trump (~
10 Female White 4-year Democrat 1 Joe Biden (Democr~
... with 51,541 more rows

8 / 75

Manually changing values

length(unique(cces_2020$gender))

[1] 2
length(unique(cces_2020$race))

[1] 8
length(unique(cces_2020$educ))

[1] 6
length(unique(cces_2020$pid3))

[1] 5
length(unique(cces_2020$turnout_self))

[1] 3
length(unique(cces_2020$pres_vote))

[1] 7

9 / 75

Subsetting with brackets

Note tat we can also access variables with [[]]:
unique(cces_2020$gender)

[1] Male Female
Levels: Male Female skipped not asked
unique(cces_2020[[1]])

[1] Male Female
Levels: Male Female skipped not asked
unique(cces_2020$pid3)

[1] Republican Democrat Independent Not sure Other
Levels: Democrat Republican Independent Other Not sure skipped not asked
unique(cces_2020[[4]])

[1] Republican Democrat Independent Not sure Other
Levels: Democrat Republican Independent Other Not sure skipped not asked

10 / 75

Manually changing values, alternative
unique(cces_2020[[1]])

[1] Male Female
Levels: Male Female skipped not asked
unique(cces_2020[[2]])

[1] White Black Other Hispanic
[5] Two or more races Asian Middle Eastern Native American
10 Levels: White Black Hispanic Asian Native American ... not asked
unique(cces_2020[[3]])

[1] 2-year Post-grad 4-year
[4] Some college High school graduate No HS
8 Levels: No HS High school graduate Some college 2-year 4-year ... not asked
unique(cces_2020[[4]])

[1] Republican Democrat Independent Not sure Other
Levels: Democrat Republican Independent Other Not sure skipped not asked
unique(cces_2020[[5]])

[1] 1 NA 0
unique(cces_2020[[6]])

[1] Donald J. Trump (Republican) <NA>
[3] Joe Biden (Democrat) Other
[5] I did not vote in this race Not sure
[7] I did not vote
8 Levels: Joe Biden (Democrat) Donald J. Trump (Republican) ... not asked

11 / 75

Recognizing the template

What if you had more values? Not efficient!

Recognize the template:
length(unique(cces_2020[[<<column number>>]]))

Can we give R this template and a set of column numbers have it
do our task repeatedly?

12 / 75

Loops in R
for loop provides a way to execute these templates multiple times:
output <- rep(NA, tims = ncol(cces_2020)) # 1. output
for (i in seq_along(cces_2020)) { # 2. sequence

output[i] <- length(unique(cces_2020[[i]])) # 3. body
}
output

[1] 2 8 6 5 3 7

• Elements of a loop:

1 output: vector to hold the

2 i: placeholder name we’ll use to swap values between iterations

3 seq_along(cces_2020): vector of values we want the
placeholder to take

4 body: a set of expressions that will be repeatedly evaluated

5 {}: curly braces to define beginning and end of the loop
• Indentation is important for readability of the code

13 / 75

2020 polling prediction
Election data: pres20

Variable Description

state abbreviated name of state
biden Biden’s vote share (percentage)
trump Trump’s vote share (percentage)
ev number of electoral college votes for the state

Polling data: polls20

Variable Description

state state in which poll was conducted
end_date end date the period when poll was conducted
daysleft number of days between end date and election date
pollster name of organization conducting poll
sample_size number of samples for each poll conducted
biden predicted support for Biden (percentage)
trump predicted support for Trump (percentage)

14 / 75

Some preprocessing

library(TPDdata)

calculate Trump's margin of victory
polls20 <- polls20 |>

mutate(margin = biden - trump)

pres20 <- pres20 |>
mutate(margin = biden - trump)

glimpse(polls20)

Rows: 2,445
Columns: 8
$ end_date <date> 2020-11-02, 2020-11-02, 2020-11-02, 2020-11-02, 2020-11-0~
$ state <chr> "FL", "PA", "FL", "FL", "NV", "GA", "SC", "MT", "ME", "AZ"~
$ days_left <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1~
$ pollster <chr> "The Political Matrix/The Listener Group", "Susquehanna", ~
$ sample_size <dbl> 966, 499, 400, 1054, 1024, 1041, 817, 920, 1024, 610, 1261~
$ biden <dbl> 44.2, 48.4, 47.0, 47.3, 48.4, 45.4, 39.0, 45.0, 52.0, 50.0~
$ trump <dbl> 48.0, 49.2, 48.2, 49.4, 49.1, 49.7, 51.4, 50.0, 40.0, 47.5~
$ margin <dbl> -3.8, -0.8, -1.2, -2.1, -0.7, -4.3, -12.4, -5.0, 12.0, 2.5~

15 / 75

Reminder of our goal

• Coding strategy:
1 For each state, subset to polls within that state

2 Further subset the latest polls

3 Average the latest polls to estimate support for each candidate

4 Allocate the electoral votes to the candidate who has greatest
support

5 Repeat this for all states and aggregate the electoral votes

16 / 75

Poll prediction for each state

poll_pred <- rep(NA, 51) # place holder

get list of unique state names to iterate over
state_names <- sort(unique(polls20$state))

add labels to holder
names(poll_pred) <- state_names

for (i in 1:51) {
state_data <- subset(polls20, subset = (state == state_names[i]))

latest <- state_data$days_left == min(state_data$days_left)

poll_pred[i] <- mean(state_data$margin[latest])
}
head(poll_pred)

AK AL AR AZ CA CO
-9.00 -26.00 -23.00 4.25 26.00 11.00

17 / 75

Tidyverse alternative version

poll_pred <- polls20 |>
group_by(state) |>
filter(days_left == min(days_left)) |>
summarize(margin_pred = mean(margin))

poll_pred

A tibble: 51 x 2
state margin_pred
<chr> <dbl>
1 AK -9
2 AL -26
3 AR -23
4 AZ 4.25
5 CA 26
6 CO 11
7 CT 22
8 DC 89
9 DE 22
10 FL 0.0800
... with 41 more rows

18 / 75

3. Evaluating the
predictions

19 / 75

Polling errors

Prediction error = actual outcome - predicted outcome
poll_pred <- poll_pred |>

left_join(pres20) |>
mutate(errors = margin - margin_pred)

Joining with `by = join_by(state)`
poll_pred

A tibble: 51 x 8
state margin_pred ev biden trump other margin errors
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 AK -9 3 42.8 52.8 0.732 -10.1 -1.06
2 AL -26 9 36.6 62.0 0.699 -25.5 0.538
3 AR -23 6 34.8 62.4 0.257 -27.6 -4.62
4 AZ 4.25 11 49.4 49.1 0.263 0.309 -3.94
5 CA 26 55 63.5 34.3 0.244 29.2 3.16
6 CO 11 9 55.0 41.6 0.161 13.4 2.41
7 CT 22 7 59.3 39.2 0.129 20.1 -1.93
8 DC 89 3 92.1 5.40 0.491 86.8 -2.25
9 DE 22 3 58.7 39.8 0.0780 19.0 -3.03
10 FL 0.0800 29 47.9 51.2 0.0835 -3.36 -3.44
... with 41 more rows

20 / 75

Assessing the prediction error

Bias: average prediction error
mean(poll_pred$errors)

[1] -3.983248

Root mean-square error: average magnitude of the prediction
error
sqrt(mean(poll_pred$errorsˆ2))

[1] 6.06975

21 / 75

Histogram of the errors

ggplot(poll_pred, aes(x = errors)) +
geom_histogram() +
labs(
x = "Prediction error for Biden's margin of victory"

)

22 / 75

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

0

2

4

6

−15 −10 −5 0 5
Prediction error for Biden's margin of victory

co
un

t

23 / 75

Comparing polls to outcome

Sometimes we want plot text labels instead of point and we use
geom_text and the label aesthetic:
merge the actual results
ggplot(poll_pred, aes(x = margin_pred, y=margin)) +

geom_text(aes(label = state)) +
geom_abline(xintercept = 0, slope = 1, linetype=2) +
geom_hline(yintercept = 0, color = "grey50") +
geom_vline(xintercept = 0, color = "grey50")

24 / 75

Classification

Election prediction: need to predict winner in each state:
poll_pred |>

filter(margin > 0) |>
summarize(sum(ev)) |>

pull()

[1] 306
poll_pred |>

filter(margin_pred > 0) |>
summarize(sum(ev)) |>
pull()

[1] 328

25 / 75

Classification problem

• Prediction of binary outcome variable = classification
problem

• Wrong prediction ≈ misclassification
1 true positive: predict Trump wins when he actually wins

2 false positive: predict Trump wins when he actually loses

3 true negative: predict Trump loses when he actually loses

4 false negative: predict Trump loses when he actually wins

• Sometimes false negatives are more/less important: e.g. civil
war

26 / 75

Classification based on polls

Accuracy: sign() returns 1 for a positive number, -1 for a negative
number, and 0 for 0
poll_pred |>

summarize(prop_correct = mean(sign(margin_pred) == sign(margin))) |>
pull()

[1] 0.9215686

Which states did polls call wrong?
poll_pred |>

filter(sign(margin_pred) != sign(margin))

A tibble: 4 x 8
state margin_pred ev biden trump other margin errors
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 FL 0.0800 29 47.9 51.2 0.0835 -3.36 -3.44
2 GA -1.15 16 49.5 49.2 0.0759 0.236 1.39
3 NC 3.95 15 48.6 49.9 0.296 -1.35 -5.30
4 NV -0.350 6 50.1 47.7 0.759 2.39 2.74

27 / 75

4. Time-series plot

28 / 75

National polls

We often want to show a time series of the national-level polls to
get a sense of the popular vote:
national_polls20

A tibble: 654 x 5
end_date pollster sample_~1 biden trump
<date> <chr> <dbl> <dbl> <dbl>
1 2020-11-03 Lake Research 2400 51 48
2 2020-11-02 Research Co. 1025 50 42
3 2020-11-02 YouGov 1363 53 43
4 2020-11-02 Ipsos 914 52 45
5 2020-11-02 SurveyMonkey 28240 52 46
6 2020-11-02 HarrisX 2297 52 48
7 2020-11-02 TIPP 1212 50.4 46.0
8 2020-11-02 USC Dornsife 5423 53.9 42.4
9 2020-11-01 John Zogby Strategies/EMI Research Solutions 1008 49.6 43.8
10 2020-11-01 Swayable 5174 51.8 46.1
... with 644 more rows, and abbreviated variable name 1: sample_size

29 / 75

Plotting the raw results

national_polls20 |>
ggplot(aes(x = end_date)) +
geom_point(aes(y = biden), color = "steelblue1") +
geom_point(aes(y = trump), color = "indianred1")

30 / 75

Plotting the raw results
Fairly messy:

40

45

50

55

Jun Jul Aug Sep Oct Nov
end_date

bi
de

n

31 / 75

Clean the mess by taking moving averages

Goal: plot the average of polls in the last 7 days (very difficult with
dplyr)

Loop over each day in the data and do:

1 subset to all polls in the previous 7 days of that day

2 calculate the average of these polls for Biden and Trump

3 save the results as a 1-row tibble

32 / 75

Dates in R

You can get R to properly understand dates and do arithmetic with
them:
head(national_polls20$end_date)

[1] "2020-11-03" "2020-11-02" "2020-11-02" "2020-11-02" "2020-11-02"
[6] "2020-11-02"
head(national_polls20$end_date+3)

[1] "2020-11-06" "2020-11-05" "2020-11-05" "2020-11-05" "2020-11-05"
[6] "2020-11-05"

33 / 75

Lubridate to create dates

We can convert a string to a date using the lubridate package:
"2020-11-03" + 3 ## R doesn't know this is a date yet!

Error in ”2020-11-03” + 3: non-numeric argument to binary operator
lubridate::ymd("2020-11-03") + 3

[1] "2020-11-06"
lubridate::mdy("11/03/2020") + 3

[1] "2020-11-06"

34 / 75

Getting a vector of dates

Setup the vector of dates to cover:
election_day <- lubridate::ymd("2020-11-03")
all_dates <- seq(from = min(national_polls20$end_date) +1,

to = election_day,
by = "days")

head(all_dates)

[1] "2020-06-03" "2020-06-04" "2020-06-05" "2020-06-06" "2020-06-07"
[6] "2020-06-08"

35 / 75

Moving window loop

output <-vector("list", length=length(all_dates))
for (i in seq_along(all_dates)) {

this_date <- all_dates[[i]]

this_week <- national_polls20 |>
filter(

this_date - end_date >= 0, # this_date is after end_date
this_date - end_date < 7 # within a week

)

output[[i]] <- this_week |>
summarize(

date = this_date,
biden = mean(biden, na.rm = TRUE),
trump = mean(trump, na.rm = TRUE)

)
}
output <- bind_rows(output)

36 / 75

Result

output

[1] 2 8 6 5 3 7

37 / 75

Let’s plot

output |>
ggplot(aes(x = date)) +
geom_point(aes(y = biden), color = "steelblue1") +
geom_point(aes(y = trump), color = "indianred1") +
geom_vline(xintercept = election_day) +
geom_point(aes(x = election_day, y = 51.3), color = "steelblue1", size = 5) +
geom_point(aes(x = election_day, y = 46.9), color = "indianred1", size = 5) +
labs(

x = "Date",
y = "Predicted Vote Percentage"

)

38 / 75

Let’s plot

39 / 75

Prediction (again)

40 / 75

Predicting weight

Predicting weight with activity: health data

Variable Description

date date of measurements
active_calories calories burned
steps number of steps taken (in, 1,000s)
weight weight (lbs)
steps_lag steps on day before (in 1,000s)
calories_lag calories burned on day before

41 / 75

Predicting using bivariate relationship

• Goal: what’s our best guess about Yi if we know what Xi is?
• What’s our best guess about one’s weight this morning? Would

it be helpful if we know how many steps she/he took yesterday?

• Terminology:
• Dependent/outcome variable: what we want to predict

(weight)
• Independent/explanatory variable: what we are using to

predict (steps)

42 / 75

Weight data

• Load the data:
library(TPDdata)
health <- drop_na(health)

• Plot the data:
ggplot(health, aes(x = steps_lag, y = weight)) +

geom_point(color = "steelblue1") +
labs(
x = "Steps on day prior (in 1000s)"
y = "Weight",
title = "Weight and Steps"

)

43 / 75

155

160

165

170

175

5 10 15 20 25
Steps on day prior (in 1000s)

W
ei

gh
t

Weight and Steps

44 / 75

Prediction on variable with another

• Prediction with access to just Y: average of the Y values

• Prediction with another variable: for any value of X, what’s the
best guess about Y?

• Need a function y = f(x) that maps values of X into predictions
• Machine learning: fancy ways to determine f(x)

• Example: what if did 5,000 steps today? What’s my best guess
about weight?

45 / 75

Start with looking at a narrow strip of X

Let’s find all values that round to 5,000 steps:
health |>

filter(round(steps_lag) == 5)

A tibble: 12 x 6
date active_calories steps weight steps_lag calorie_lag
<date> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2015-09-08 1111. 15.2 169. 5.02 410.
2 2015-12-12 728. 14.7 167. 5.36 259.
3 2015-12-28 430. 8.94 170. 5.19 314
4 2016-01-29 475. 8.26 171. 4.95 314.
5 2016-02-14 264. 5.42 172. 4.86 297.
6 2016-02-15 892. 13.1 171. 5.42 264.
7 2016-05-02 627. 11.8 170. 5.04 283.
8 2016-06-27 352. 7.21 169. 4.93 212.
9 2016-07-22 766. 14.8 167. 4.96 251.
10 2016-11-25 452 9.4 173. 5.26 295
11 2016-11-28 577. 11.8 171. 4.97 304.
12 2016-12-30 621. 12.4 176. 5.42 371.

46 / 75

Best guess about Y for this X

Best prediction about weight for a step count of roughly 5,000 is
the average weight for observations around that value:
mean_wt_5k_steps <- health |>

filter(round(steps_lag) == 5) |>
summarize(mean(weight)) |>
pull()

mean_wt_5k_steps

[1] 170.5333

47 / 75

Plotting the best guess

ggplot(health, aes(x = steps_lag, y = weight)) +
geom_point(color = "steelblue1", alpha = 0.5) +
labs(

x = "Steps on day prior (in 1000s)",
y = "Weight",
title = "Weight and Steps") +

geom_vline(xintercept = c(4.5, 5.5), linetype = "dashed") +
geom_point(aes(x = 5, y = mean_wt_5k_steps), color = "indianred1",

size = 3)

48 / 75

155

160

165

170

175

5 10 15 20 25
Steps on day prior (in 1000s)

W
ei

gh
t

Weight and Steps

49 / 75

Binned means

We can use a stat_summary_bin() to add these binned means all
over the scatter plot:
ggplot(health, aes(x = steps_lag, y = weight)) +

geom_point(color = "steelblue1", alpha = 0.25) +
labs(

x = "Steps on day prior (in 1000s)",
y= "Weight",
title = "Weight and Steps"

) +
stat_summary_bin(fun = "mean", color = "indianred1", size = 3,

geom = "point", bandwidth = 1)

50 / 75

155

160

165

170

175

5 10 15 20 25
Steps on day prior (in 1000s)

W
ei

gh
t

Weight and Steps

51 / 75

Smaller bins

But what happens when we make the bins too small?
ggplot(health, aes(x = steps_lag, y = weight)) +

geom_point(color = "steelblue1", alpha = 0.25) +
labs(

x = "Steps on day prior (in 1000s)",
y= "Weight",
title = "Weight and Steps"

) +
stat_summary_bin(fun = "mean", color = "indianred1", size = 3,

geom = "point", bandwidth = 0.5) +
geom_vline(xintercept = c(2.5, 3, 23, 23.5), linetype = "dashed")

52 / 75

Gaps and bumps:

155

160

165

170

175

5 10 15 20 25
Steps on day prior (in 1000s)

W
ei

gh
t

Weight and Steps

53 / 75

Modeling with a line

54 / 75

Using a line to predict

• Can we smooth out these binned means and close gaps? A
model

• Simplest possible way to relate two variables: a line

y = mx + b

• Problem: for any line we draw, not all the data is on the line
• Some points will be above the line, some below
• Need a way to account for chance variation away from the line

55 / 75

Linear regression model
• Model for the line of best fit:

Yi = α︸︷︷︸
intercept

+ β︸︷︷︸
slope

·Xi + εi︸︷︷︸
error term

• Coefficients/parameters (α, β): true unknown
intercept/slope of the line of best fit

• Chance error εi : accounts for the fact that the line doesn’t
perfectly fit the data

• Each observation allowed to be off the regression line
• Chance errors are 0 on average

• Useful fiction: this model represents the data generating
process

• George Box (British statistician): “all models are wrong,
some are useful” 56 / 75

Interpreting the regression line

Yi = α+ β · Xi + εi

• Intercept α: average value of Y when X is 0
• Average weight when I take 0 steps the day prior

• Slope β: average change in Y when X increases by one unit
• Average decrease in weight for each additional 1,000 steps

57 / 75

Estimated coefficients

• Parameters: α, β
• Unknown features of the data-generating process
• Chance error makes these impossible to observe directly

• Estimates: α̂, β̂
• An estimate is our best guess about some parameter

• Regression line: Ŷ = α̂+ β̂ · x
• Average value of Y when X is equal to x
• Represents the best guess of predicted value of the outcome

at x

58 / 75

line of best fit

ggplot(health, aes(x = steps_lag, y = weight)) +
geom_point(color = "steelblue1") +
labs(

x = "Steps on day prior (in 1000s)",
y = "Weight",
title = "Weight and Steps")+

geom_smooth(method = "lm", se = FALSE, color = "indianred1", size = 1.5)

59 / 75

Line of best fit

155

160

165

170

175

5 10 15 20 25
Steps on day prior (in 1000s)

W
ei

gh
t

Weight and Steps

60 / 75

Why not this line?

61 / 75

Prediction error

Let’s understand the prediction error for a line with intercept a
and slope b

Fitted/predicted value for unit i:

a + b · Xi

Prediction error (residual):

error = actual − predicted = Yi − (a + b · Xi)

62 / 75

Prediction errors/residuals

63 / 75

Least squares

• Get these estimates by the least squares methods

• Minimize the sum of the squared residuals (SSR):

SSR =
n∑

i=1
(prediction errori)2 =

n∑
i=1

(Yi − a − b · Xi)2

• Finds the line that minimizes the magnitude of the prediction
errors!

64 / 75

Linear regression in R

65 / 75

Linear regression in R

• R will calculate least squares line for a data set using lm()
• Syntax: lm(y x, data = mydata)
• y is the name of the dependent variable
• x is the name of the independent variable
• mydata is the data.frame where they live

fit <- lm(weight ~ steps_lag, data=health)
fit

##
Call:
lm(formula = weight ~ steps_lag, data = health)
##
Coefficients:
(Intercept) steps_lag
170.6750 -0.2308

66 / 75

Coefficients

use coef() to extract estimated coefficients:
coef(fit)

(Intercept) steps_lag
170.6749706 -0.2307681

Interpretation: a 1-unit increase in X (1,000 steps) is associated
with a decrease in the average weight of 0.231 pounds

Question: what would this model predict about the change in
average weight for a 10,000 step increase in steps?

67 / 75

broom package

The broom package can provide nice summaries of the regression
output
augment() can show fitted values, residuals and other unit-level
statistics:
library(broom)
augment(fit) |>

head()

A tibble: 6 x 8
weight steps_lag .fitted .resid .hat .sigma .cooksd .std.resid
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 169. 17.5 167. 2.46 0.00369 4.68 0.000513 0.526
2 168 18.4 166. 1.57 0.00463 4.68 0.000264 0.337
3 167. 19.6 166. 1.05 0.00609 4.68 0.000154 0.224
4 168. 10.4 168. -0.0750 0.00217 4.68 0.000000280 -0.0160
5 168. 18.7 166. 1.44 0.00496 4.68 0.000238 0.309
6 166. 9.14 169. -2.27 0.00296 4.68 0.000349 -0.485

68 / 75

Properties of least squares

Least squares line always goes through (X ,Y)
ggplot(health, aes(x = steps_lag, y = weight)) +

geom_point(color = "steelblue1") +
labs(

x = "Steps on day prior (in 1000s)",
y = "Weight",
title = "Weight and Steps") +

geom_hline(yintercept = mean(health$weight), linetype = "dashed") +
geom_vline(xintercept = mean(health$steps_lag), linetype = "dashed") +
geom_smooth(method = "lm", se = FALSE, color = "indianred1", size = 1.5)

69 / 75

Least squares line always goes through (X ,Y)

155

160

165

170

175

5 10 15 20 25
Steps on day prior (in 1000s)

W
ei

gh
t

Weight and Steps

70 / 75

Properties of least squares line

Estimated slope is related to correlation:

β̂ = (correlation of X and Y) × SD of Y
SD of X

Mean of residuals is always 0
augment(fit) |>

summarize(mean(.resid))

A tibble: 1 x 1
`mean(.resid)`
<dbl>
1 -1.21e-13

71 / 75

Plotting the residuals

augment(fit) |>
ggplot(aes(x = steps_lag, y = .resid)) +
geom_point(color = "steelblue1", alpha = 0.75) +
labs(

x = "Steps on day prior (in 1000s)",
y = "Residuals",
title = "Residual plot") +

geom_smooth(method = "lm", se = FALSE, color = "indianred1", size = 1.5)

72 / 75

−10

−5

0

5

10

5 10 15 20 25
Steps on day prior (in 1000s)

R
es

id
ua

ls

Residual plot

73 / 75

Smoothed graph of averages

Another way to think of the regression line is a smoothed version of
the binned means plot:
ggplot(health, aes(x = steps_lag, y = weight)) +

geom_point(color = "steelblue1", alpha = 0.25) +
labs(

x = "Steps on day prior (in 1000s)",
y = "Weight",
title = "Weight and Steps") +

stat_summary_bin(fun = "mean", color = "indianred1", size = 3,
geom = "point", binwidth = 1) +

geom_smooth(method = "lm", se = FALSE, color = "indianred1", size = 1)

74 / 75

155

160

165

170

175

5 10 15 20 25
Steps on day prior (in 1000s)

W
ei

gh
t

Weight and Steps

75 / 75

