
Summerizing relationships and tidying and joining
data

Seung-Ho An, University of Arizona

1 / 66

Agenda

• Housekeeping

• Z-scores and standardization

• Correlation

• Writing our own functions

• Causality review

• Pivoting data longer

• Joining data sets

2 / 66

Housekeeping

SQL like functions to find a match (we will cover this during the
lecture)

Easier tab functions: prop.table(); this is also a tidyway

pull() pulls a vector from an object. It works like a $ under pipes
(last week’s example)

• You can also call a vector/variable/column with pull() (e.g.,
pull(.data, var))

Here is the link for the another example from Gruber on the
powerful DiD tool

• This link will expire in a couple of weeks

3 / 66

https://www.dropbox.com/s/1wo8mo6smqwe3t4/DiD-Gruber.pdf?dl=0
https://www.dropbox.com/s/1wo8mo6smqwe3t4/DiD-Gruber.pdf?dl=0

Housekeeping

SQL like functions to find a match (we will cover this during the
lecture)

Easier tab functions: prop.table(); this is also a tidyway

pull() pulls a vector from an object. It works like a $ under pipes
(last week’s example)

• You can also call a vector/variable/column with pull() (e.g.,
pull(.data, var))

Here is the link for the another example from Gruber on the
powerful DiD tool

• This link will expire in a couple of weeks

3 / 66

https://www.dropbox.com/s/1wo8mo6smqwe3t4/DiD-Gruber.pdf?dl=0
https://www.dropbox.com/s/1wo8mo6smqwe3t4/DiD-Gruber.pdf?dl=0

Housekeeping

SQL like functions to find a match (we will cover this during the
lecture)

Easier tab functions: prop.table(); this is also a tidyway

pull() pulls a vector from an object. It works like a $ under pipes
(last week’s example)

• You can also call a vector/variable/column with pull() (e.g.,
pull(.data, var))

Here is the link for the another example from Gruber on the
powerful DiD tool

• This link will expire in a couple of weeks

3 / 66

https://www.dropbox.com/s/1wo8mo6smqwe3t4/DiD-Gruber.pdf?dl=0
https://www.dropbox.com/s/1wo8mo6smqwe3t4/DiD-Gruber.pdf?dl=0

Housekeeping

SQL like functions to find a match (we will cover this during the
lecture)

Easier tab functions: prop.table(); this is also a tidyway

pull() pulls a vector from an object. It works like a $ under pipes
(last week’s example)

• You can also call a vector/variable/column with pull() (e.g.,
pull(.data, var))

Here is the link for the another example from Gruber on the
powerful DiD tool

• This link will expire in a couple of weeks

3 / 66

https://www.dropbox.com/s/1wo8mo6smqwe3t4/DiD-Gruber.pdf?dl=0
https://www.dropbox.com/s/1wo8mo6smqwe3t4/DiD-Gruber.pdf?dl=0

Housekeeping

SQL like functions to find a match (we will cover this during the
lecture)

Easier tab functions: prop.table(); this is also a tidyway

pull() pulls a vector from an object. It works like a $ under pipes
(last week’s example)

• You can also call a vector/variable/column with pull() (e.g.,
pull(.data, var))

Here is the link for the another example from Gruber on the
powerful DiD tool

• This link will expire in a couple of weeks

3 / 66

https://www.dropbox.com/s/1wo8mo6smqwe3t4/DiD-Gruber.pdf?dl=0
https://www.dropbox.com/s/1wo8mo6smqwe3t4/DiD-Gruber.pdf?dl=0

1. Z-scores and
standardization

4 / 66

COVID vaccination rates and votes

library(tidyverse)
library(TPDdata)
covid_votes

A tibble: 3,114 x 8
fips county state one_dose_5plus~1 one_d~2 boost~3 dem_p~4 dem_p~5
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 26039 Crawford County MI 55.7 77.3 31.2 43.8 34.0
2 40015 Caddo County OK 83.3 95 30.3 46.4 27.1
3 17007 Boone County IL 71.1 94.5 35.1 41.8 42.2
4 12055 Highlands County FL 68.9 93.7 24.7 40.3 32.5
5 34029 Ocean County NJ 71 95 32.1 47.2 35.0
6 01067 Henry County AL 58.5 85.5 18.2 40.1 28.0
7 27037 Dakota County MN 81 95 49.5 46.9 55.7
8 27115 Pine County MN 56.5 85 31.7 47.0 33.9
9 51750 Radford city VA 41.5 73.8 1.79 46.4 53.1
10 22009 Avoyelles Parish LA 59.7 80.1 21.9 45.7 28.8
... with 3,104 more rows, and abbreviated variable names
1: one_dose_5plus_pct, 2: one_dose_65plus_pct, 3: booster_5plus_pct,
4: dem_pct_2000, 5: dem_pct_2020

5 / 66

Is 60% vaccnated a lot?

6 / 66

How large is large?

• How large 60% vaccinated is depends on the distribution!

• Clear to see from the histogram
• Middling for the 5+ group, but very low for the 65+ group

• Can we transform the values of our variables to be common
units?

• Yes, with two transformations:
• Centering: subtract the mean of the variable from each value
• Scaling: dividing deviations from the mean by the standard

deviation

7 / 66

How large is large?

• How large 60% vaccinated is depends on the distribution!
• Clear to see from the histogram

• Middling for the 5+ group, but very low for the 65+ group

• Can we transform the values of our variables to be common
units?

• Yes, with two transformations:
• Centering: subtract the mean of the variable from each value
• Scaling: dividing deviations from the mean by the standard

deviation

7 / 66

How large is large?

• How large 60% vaccinated is depends on the distribution!
• Clear to see from the histogram
• Middling for the 5+ group, but very low for the 65+ group

• Can we transform the values of our variables to be common
units?

• Yes, with two transformations:
• Centering: subtract the mean of the variable from each value
• Scaling: dividing deviations from the mean by the standard

deviation

7 / 66

How large is large?

• How large 60% vaccinated is depends on the distribution!
• Clear to see from the histogram
• Middling for the 5+ group, but very low for the 65+ group

• Can we transform the values of our variables to be common
units?

• Yes, with two transformations:
• Centering: subtract the mean of the variable from each value
• Scaling: dividing deviations from the mean by the standard

deviation

7 / 66

How large is large?

• How large 60% vaccinated is depends on the distribution!
• Clear to see from the histogram
• Middling for the 5+ group, but very low for the 65+ group

• Can we transform the values of our variables to be common
units?

• Yes, with two transformations:

• Centering: subtract the mean of the variable from each value
• Scaling: dividing deviations from the mean by the standard

deviation

7 / 66

How large is large?

• How large 60% vaccinated is depends on the distribution!
• Clear to see from the histogram
• Middling for the 5+ group, but very low for the 65+ group

• Can we transform the values of our variables to be common
units?

• Yes, with two transformations:
• Centering: subtract the mean of the variable from each value

• Scaling: dividing deviations from the mean by the standard
deviation

7 / 66

How large is large?

• How large 60% vaccinated is depends on the distribution!
• Clear to see from the histogram
• Middling for the 5+ group, but very low for the 65+ group

• Can we transform the values of our variables to be common
units?

• Yes, with two transformations:
• Centering: subtract the mean of the variable from each value
• Scaling: dividing deviations from the mean by the standard

deviation

7 / 66

Original distributions

8 / 66

Centered distributions

9 / 66

Centered and scaled distributions

10 / 66

Z-scores

• Centering tells us immediately if a value is above or below the
mean

• Scaling tells us how many standard deviations away from the
mean it is

• Combine them with the z-score transformation:

z-score of xi = xi − mean of x
standard deviation of x

- Useful heuristic: data more than 3 SDs away from its mean are rare

11 / 66

Z-scores

• Centering tells us immediately if a value is above or below the
mean

• Scaling tells us how many standard deviations away from the
mean it is

• Combine them with the z-score transformation:

z-score of xi = xi − mean of x
standard deviation of x

- Useful heuristic: data more than 3 SDs away from its mean are rare

11 / 66

Z-scores

• Centering tells us immediately if a value is above or below the
mean

• Scaling tells us how many standard deviations away from the
mean it is

• Combine them with the z-score transformation:

z-score of xi = xi − mean of x
standard deviation of x

- Useful heuristic: data more than 3 SDs away from its mean are rare

11 / 66

Z-score example

covid_votes |>
mutate(one_dose_centered = one_dose_5plus_pct -

mean(one_dose_5plus_pct, na.rm=TRUE)) |>
select(fips:state, one_dose_5plus_pct, one_dose_centered)

A tibble: 3,114 x 5
fips county state one_dose_5plus_pct one_dose_centered
<chr> <chr> <chr> <dbl> <dbl>
1 26039 Crawford County MI 55.7 -7.35
2 40015 Caddo County OK 83.3 20.2
3 17007 Boone County IL 71.1 8.05
4 12055 Highlands County FL 68.9 5.85
5 34029 Ocean County NJ 71 7.95
6 01067 Henry County AL 58.5 -4.55
7 27037 Dakota County MN 81 17.9
8 27115 Pine County MN 56.5 -6.55
9 51750 Radford city VA 41.5 -21.6
10 22009 Avoyelles Parish LA 59.7 -3.35
... with 3,104 more rows

12 / 66

Z-score example

covid_votes |>
mutate(

one_dose_z =
(one_dose_5plus_pct - mean(one_dose_5plus_pct, na.rm=TRUE)) /
sd(one_dose_5plus_pct, na.rm=TRUE)) |>

select(fips:state, one_dose_5plus_pct, one_dose_z)

A tibble: 3,114 x 5
fips county state one_dose_5plus_pct one_dose_z
<chr> <chr> <chr> <dbl> <dbl>
1 26039 Crawford County MI 55.7 -0.508
2 40015 Caddo County OK 83.3 1.40
3 17007 Boone County IL 71.1 0.556
4 12055 Highlands County FL 68.9 0.404
5 34029 Ocean County NJ 71 0.549
6 01067 Henry County AL 58.5 -0.314
7 27037 Dakota County MN 81 1.24
8 27115 Pine County MN 56.5 -0.452
9 51750 Radford city VA 41.5 -1.49
10 22009 Avoyelles Parish LA 59.7 -0.231
... with 3,104 more rows

13 / 66

2. Correlation

14 / 66

Correlation

• How do variables move together on average?

• When xi is big, what is yi likely to be?
• Positive correlation: When xi is big, yi is also big
• Negative correlation: When xi is big, yi is small
• High magnitude of correlation: data cluster tightly around a line

• The technical definition of the correlation coefficient:

1
n − 1

n∑
i=1

[(z-score for xi) × (z-score for yi)]

• Interpretation:
• Correlation is between -1 and 1
• Correlation of 0 means no linear association
• Positive correlations ≈ positive associations
• Negative correlations ≈ negative associations
• Closer to -1 or 1 means stronger association

15 / 66

Correlation

• How do variables move together on average?
• When xi is big, what is yi likely to be?

• Positive correlation: When xi is big, yi is also big
• Negative correlation: When xi is big, yi is small
• High magnitude of correlation: data cluster tightly around a line

• The technical definition of the correlation coefficient:

1
n − 1

n∑
i=1

[(z-score for xi) × (z-score for yi)]

• Interpretation:
• Correlation is between -1 and 1
• Correlation of 0 means no linear association
• Positive correlations ≈ positive associations
• Negative correlations ≈ negative associations
• Closer to -1 or 1 means stronger association

15 / 66

Correlation

• How do variables move together on average?
• When xi is big, what is yi likely to be?

• Positive correlation: When xi is big, yi is also big

• Negative correlation: When xi is big, yi is small
• High magnitude of correlation: data cluster tightly around a line

• The technical definition of the correlation coefficient:

1
n − 1

n∑
i=1

[(z-score for xi) × (z-score for yi)]

• Interpretation:
• Correlation is between -1 and 1
• Correlation of 0 means no linear association
• Positive correlations ≈ positive associations
• Negative correlations ≈ negative associations
• Closer to -1 or 1 means stronger association

15 / 66

Correlation

• How do variables move together on average?
• When xi is big, what is yi likely to be?

• Positive correlation: When xi is big, yi is also big
• Negative correlation: When xi is big, yi is small

• High magnitude of correlation: data cluster tightly around a line
• The technical definition of the correlation coefficient:

1
n − 1

n∑
i=1

[(z-score for xi) × (z-score for yi)]

• Interpretation:
• Correlation is between -1 and 1
• Correlation of 0 means no linear association
• Positive correlations ≈ positive associations
• Negative correlations ≈ negative associations
• Closer to -1 or 1 means stronger association

15 / 66

Correlation

• How do variables move together on average?
• When xi is big, what is yi likely to be?

• Positive correlation: When xi is big, yi is also big
• Negative correlation: When xi is big, yi is small
• High magnitude of correlation: data cluster tightly around a line

• The technical definition of the correlation coefficient:

1
n − 1

n∑
i=1

[(z-score for xi) × (z-score for yi)]

• Interpretation:
• Correlation is between -1 and 1
• Correlation of 0 means no linear association
• Positive correlations ≈ positive associations
• Negative correlations ≈ negative associations
• Closer to -1 or 1 means stronger association

15 / 66

Correlation

• How do variables move together on average?
• When xi is big, what is yi likely to be?

• Positive correlation: When xi is big, yi is also big
• Negative correlation: When xi is big, yi is small
• High magnitude of correlation: data cluster tightly around a line

• The technical definition of the correlation coefficient:

1
n − 1

n∑
i=1

[(z-score for xi) × (z-score for yi)]

• Interpretation:
• Correlation is between -1 and 1
• Correlation of 0 means no linear association
• Positive correlations ≈ positive associations
• Negative correlations ≈ negative associations
• Closer to -1 or 1 means stronger association

15 / 66

Correlation

• How do variables move together on average?
• When xi is big, what is yi likely to be?

• Positive correlation: When xi is big, yi is also big
• Negative correlation: When xi is big, yi is small
• High magnitude of correlation: data cluster tightly around a line

• The technical definition of the correlation coefficient:

1
n − 1

n∑
i=1

[(z-score for xi) × (z-score for yi)]

• Interpretation:

• Correlation is between -1 and 1
• Correlation of 0 means no linear association
• Positive correlations ≈ positive associations
• Negative correlations ≈ negative associations
• Closer to -1 or 1 means stronger association

15 / 66

Correlation

• How do variables move together on average?
• When xi is big, what is yi likely to be?

• Positive correlation: When xi is big, yi is also big
• Negative correlation: When xi is big, yi is small
• High magnitude of correlation: data cluster tightly around a line

• The technical definition of the correlation coefficient:

1
n − 1

n∑
i=1

[(z-score for xi) × (z-score for yi)]

• Interpretation:
• Correlation is between -1 and 1

• Correlation of 0 means no linear association
• Positive correlations ≈ positive associations
• Negative correlations ≈ negative associations
• Closer to -1 or 1 means stronger association

15 / 66

Correlation

• How do variables move together on average?
• When xi is big, what is yi likely to be?

• Positive correlation: When xi is big, yi is also big
• Negative correlation: When xi is big, yi is small
• High magnitude of correlation: data cluster tightly around a line

• The technical definition of the correlation coefficient:

1
n − 1

n∑
i=1

[(z-score for xi) × (z-score for yi)]

• Interpretation:
• Correlation is between -1 and 1
• Correlation of 0 means no linear association

• Positive correlations ≈ positive associations
• Negative correlations ≈ negative associations
• Closer to -1 or 1 means stronger association

15 / 66

Correlation

• How do variables move together on average?
• When xi is big, what is yi likely to be?

• Positive correlation: When xi is big, yi is also big
• Negative correlation: When xi is big, yi is small
• High magnitude of correlation: data cluster tightly around a line

• The technical definition of the correlation coefficient:

1
n − 1

n∑
i=1

[(z-score for xi) × (z-score for yi)]

• Interpretation:
• Correlation is between -1 and 1
• Correlation of 0 means no linear association
• Positive correlations ≈ positive associations

• Negative correlations ≈ negative associations
• Closer to -1 or 1 means stronger association

15 / 66

Correlation

• How do variables move together on average?
• When xi is big, what is yi likely to be?

• Positive correlation: When xi is big, yi is also big
• Negative correlation: When xi is big, yi is small
• High magnitude of correlation: data cluster tightly around a line

• The technical definition of the correlation coefficient:

1
n − 1

n∑
i=1

[(z-score for xi) × (z-score for yi)]

• Interpretation:
• Correlation is between -1 and 1
• Correlation of 0 means no linear association
• Positive correlations ≈ positive associations
• Negative correlations ≈ negative associations

• Closer to -1 or 1 means stronger association

15 / 66

Correlation

• How do variables move together on average?
• When xi is big, what is yi likely to be?

• Positive correlation: When xi is big, yi is also big
• Negative correlation: When xi is big, yi is small
• High magnitude of correlation: data cluster tightly around a line

• The technical definition of the correlation coefficient:

1
n − 1

n∑
i=1

[(z-score for xi) × (z-score for yi)]

• Interpretation:
• Correlation is between -1 and 1
• Correlation of 0 means no linear association
• Positive correlations ≈ positive associations
• Negative correlations ≈ negative associations
• Closer to -1 or 1 means stronger association

15 / 66

Correlation intuition

16 / 66

Correlation intuition

Large values of X tend to occur with large values of Y:

(z-score for xi) × (z-score for yi) = (pos. num.) × (pos. num) = +

Small values of X tend to occur with small values of Y:

(z-score for xi) × (z-score for yi) = (neg. num.) × (neg. num) = +

If these dominate ≈ positive correlation

17 / 66

Correlation intuition

Large values of X tend to occur with large values of Y:

(z-score for xi) × (z-score for yi) = (pos. num.) × (pos. num) = +

Small values of X tend to occur with small values of Y:

(z-score for xi) × (z-score for yi) = (neg. num.) × (neg. num) = +

If these dominate ≈ positive correlation

17 / 66

Correlation intuition

Large values of X tend to occur with large values of Y:

(z-score for xi) × (z-score for yi) = (pos. num.) × (pos. num) = +

Small values of X tend to occur with small values of Y:

(z-score for xi) × (z-score for yi) = (neg. num.) × (neg. num) = +

If these dominate ≈ positive correlation

17 / 66

Correlation intuition

Large values of X tend to occur with large values of Y:

(z-score for xi) × (z-score for yi) = (pos. num.) × (pos. num) = +

Small values of X tend to occur with small values of Y:

(z-score for xi) × (z-score for yi) = (neg. num.) × (neg. num) = +

If these dominate ≈ positive correlation

17 / 66

Correlation intuition

Large values of X tend to occur with large values of Y:

(z-score for xi) × (z-score for yi) = (pos. num.) × (pos. num) = +

Small values of X tend to occur with small values of Y:

(z-score for xi) × (z-score for yi) = (neg. num.) × (neg. num) = +

If these dominate ≈ positive correlation

17 / 66

Correlation intuition

Large values of X tend to occur with small values of Y:

(z-score for xi) × (z-score for yi) = (pos. num.) × (neg. num) = -

Small values of X tend to occur with large values of Y:

(z-score for xi) × (z-score for yi) = (neg. num.) × (pos. num) = -

If these dominate ≈ negative correlation

18 / 66

Correlation intuition

Large values of X tend to occur with small values of Y:

(z-score for xi) × (z-score for yi) = (pos. num.) × (neg. num) = -

Small values of X tend to occur with large values of Y:

(z-score for xi) × (z-score for yi) = (neg. num.) × (pos. num) = -

If these dominate ≈ negative correlation

18 / 66

Correlation intuition

Large values of X tend to occur with small values of Y:

(z-score for xi) × (z-score for yi) = (pos. num.) × (neg. num) = -

Small values of X tend to occur with large values of Y:

(z-score for xi) × (z-score for yi) = (neg. num.) × (pos. num) = -

If these dominate ≈ negative correlation

18 / 66

Correlation intuition

Large values of X tend to occur with small values of Y:

(z-score for xi) × (z-score for yi) = (pos. num.) × (neg. num) = -

Small values of X tend to occur with large values of Y:

(z-score for xi) × (z-score for yi) = (neg. num.) × (pos. num) = -

If these dominate ≈ negative correlation

18 / 66

Correlation intuition

Large values of X tend to occur with small values of Y:

(z-score for xi) × (z-score for yi) = (pos. num.) × (neg. num) = -

Small values of X tend to occur with large values of Y:

(z-score for xi) × (z-score for yi) = (neg. num.) × (pos. num) = -

If these dominate ≈ negative correlation

18 / 66

Correlation examples

19 / 66

Properties of correlation coefficient

• Correlation measures linear association

• Order doesn’t matter: cor(x,y) = cor(y,x)

• Not affected by changes of scale:
• cor(x,y) = cor(ax+b, cy+d)

• Celsius vs. Fahrenheit: dollars vs. pesos; cm vs. in.

20 / 66

Properties of correlation coefficient

• Correlation measures linear association

• Order doesn’t matter: cor(x,y) = cor(y,x)

• Not affected by changes of scale:
• cor(x,y) = cor(ax+b, cy+d)

• Celsius vs. Fahrenheit: dollars vs. pesos; cm vs. in.

20 / 66

Properties of correlation coefficient

• Correlation measures linear association

• Order doesn’t matter: cor(x,y) = cor(y,x)

• Not affected by changes of scale:

• cor(x,y) = cor(ax+b, cy+d)

• Celsius vs. Fahrenheit: dollars vs. pesos; cm vs. in.

20 / 66

Properties of correlation coefficient

• Correlation measures linear association

• Order doesn’t matter: cor(x,y) = cor(y,x)

• Not affected by changes of scale:
• cor(x,y) = cor(ax+b, cy+d)

• Celsius vs. Fahrenheit: dollars vs. pesos; cm vs. in.

20 / 66

Properties of correlation coefficient

• Correlation measures linear association

• Order doesn’t matter: cor(x,y) = cor(y,x)

• Not affected by changes of scale:
• cor(x,y) = cor(ax+b, cy+d)

• Celsius vs. Fahrenheit: dollars vs. pesos; cm vs. in.

20 / 66

All 4 relationships have 0.816 correlation

21 / 66

Correlation in R

Use the cor() function:
cor(covid_votes$one_dose_5plus_pct, covid_votes$dem_pct_2020)

[1] NA

Missing values: set the use ="pairwise" -> available case analysis
cor(covid_votes$one_dose_5plus_pct, covid_votes$dem_pct_2020, use="pairwise")

[1] 0.6664387

22 / 66

Comparing correlations
covid_votes |>

ggplot(aes(x = dem_pct_2020, y = one_dose_5plus_pct)) +
geom_point(alpha = 0.5)

25

50

75

0 25 50 75
dem_pct_2020

on
e_

do
se

_5
pl

us
_p

ct

cor(covid_votes$one_dose_5plus_pct, covid_votes$dem_pct_2020, use="pairwise")

[1] 0.6664387

23 / 66

Comparing correlations
covid_votes |>

ggplot(aes(x = dem_pct_2000, y = one_dose_5plus_pct)) +
geom_point(alpha = 0.5)

25

50

75

25 50 75
dem_pct_2000

on
e_

do
se

_5
pl

us
_p

ct

cor(covid_votes$one_dose_5plus_pct, covid_votes$dem_pct_2000, use="pairwise")

[1] 0.3941203

24 / 66

Comparing correlations
covid_votes |>

ggplot(aes(x = dem_pct_2020, y = one_dose_65plus_pct)) +
geom_point(alpha = 0.5)

20

40

60

80

0 25 50 75
dem_pct_2020

on
e_

do
se

_6
5p

lu
s_

pc
t

cor(covid_votes$one_dose_65plus_pct, covid_votes$dem_pct_2020, use="pairwise")

[1] 0.447203

25 / 66

3. Writing our own
functions.

26 / 66

Why write functions?

copy-pasting codes is tedious and prone to failure:
covid_votes |>

mutate(
one_dose_5p_z=

(one_dose_5plus_pct - mean(one_dose_5plus_pct, na.rm = TRUE)) /
sd(one_dose_5plus_pct, na.rm=TRUE),

one_dose_65p_z=
(one_dose_65plus_pct - mean(one_dose_65plus_pct, na.rm = TRUE)) /
sd(one_dose_65plus_pct, na.rm=TRUE),

booster_z =
(booster_5plus_pct - mean(booster_5plus_pct, na.rm = TRUE)) /
sd(booster_5plus_pct, na.rm=TRUE),

dem_pct_2000_z =
(dem_pct_2000 - mean(dem_pct_2000, na.rm = TRUE)) /
sd(dem_pct_2000, na.rm = TRUE),

dem_pct_2020_z =
(dem_pct_2020 - mean(dem_pct_2020, na.rm = TRUE)) /
sd(dem_pct_2020, na.rm = TRUE)

)

27 / 66

Writing a new function

Notice that all of the mutations follow the same template:
(x- mean(x, na.rm = TRUE)) / sd(x, na.rm= TRUE)

Only one thing varies: the column (or the vector) of data (variable),
represented with x

28 / 66

Components of a function

We create functions like so:
name <- function(arguments) {

body
}

Three components:

1 Name: the name of the function that we’ll use to call it.
Maybe z_score?

2 Arguments: things that we want to vary across calls of our
function. We will use x

3 Body: the code that the function performs

29 / 66

Components of a function

We create functions like so:
name <- function(arguments) {

body
}

Three components:

1 Name: the name of the function that we’ll use to call it.
Maybe z_score?

2 Arguments: things that we want to vary across calls of our
function. We will use x

3 Body: the code that the function performs

29 / 66

Components of a function

We create functions like so:
name <- function(arguments) {

body
}

Three components:

1 Name: the name of the function that we’ll use to call it.
Maybe z_score?

2 Arguments: things that we want to vary across calls of our
function. We will use x

3 Body: the code that the function performs

29 / 66

Components of a function

We create functions like so:
name <- function(arguments) {

body
}

Three components:

1 Name: the name of the function that we’ll use to call it.
Maybe z_score?

2 Arguments: things that we want to vary across calls of our
function. We will use x

3 Body: the code that the function performs

29 / 66

Components of a function

We create functions like so:
name <- function(arguments) {

body
}

Three components:

1 Name: the name of the function that we’ll use to call it.
Maybe z_score?

2 Arguments: things that we want to vary across calls of our
function. We will use x

3 Body: the code that the function performs

29 / 66

Our first function

Convert our template to a function:
z_score <- function(x){

(x - mean(x, na.rm = TRUE)) / sd(x, na.rm = TRUE)
}

Let’s check this if it works:
z_score(c(1, 2, 3, 4, 5))

[1] -1.2649111 -0.6324555 0.0000000 0.6324555 1.2649111

30 / 66

Our first function

Convert our template to a function:
z_score <- function(x){

(x - mean(x, na.rm = TRUE)) / sd(x, na.rm = TRUE)
}

Let’s check this if it works:
z_score(c(1, 2, 3, 4, 5))

[1] -1.2649111 -0.6324555 0.0000000 0.6324555 1.2649111

30 / 66

Now, cleaning up our code

covid_votes |>
mutate(

one_dose_5p_z=z_score(one_dose_5plus_pct),
one_dose_65p_z=z_score(one_dose_65plus_pct),
booster_z =z_score(booster_5plus_pct),
dem_pct_2000_z =z_score(dem_pct_2000),
dem_pct_2020_z =z_score(dem_pct_2020)

)

A tibble: 3,114 x 13
fips county state one_d~1 one_d~2 boost~3 dem_p~4 dem_p~5 one_d~6 one_d~7
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 26039 Crawford~ MI 55.7 77.3 31.2 43.8 34.0 -0.508 -0.829
2 40015 Caddo Co~ OK 83.3 95 30.3 46.4 27.1 1.40 0.843
3 17007 Boone Co~ IL 71.1 94.5 35.1 41.8 42.2 0.556 0.795
4 12055 Highland~ FL 68.9 93.7 24.7 40.3 32.5 0.404 0.720
5 34029 Ocean Co~ NJ 71 95 32.1 47.2 35.0 0.549 0.843
6 01067 Henry Co~ AL 58.5 85.5 18.2 40.1 28.0 -0.314 -0.0545
7 27037 Dakota C~ MN 81 95 49.5 46.9 55.7 1.24 0.843
8 27115 Pine Cou~ MN 56.5 85 31.7 47.0 33.9 -0.452 -0.102
9 51750 Radford ~ VA 41.5 73.8 1.79 46.4 53.1 -1.49 -1.16
10 22009 Avoyelle~ LA 59.7 80.1 21.9 45.7 28.8 -0.231 -0.564
... with 3,104 more rows, 3 more variables: booster_z <dbl>,
dem_pct_2000_z <dbl>, dem_pct_2020_z <dbl>, and abbreviated variable names
1: one_dose_5plus_pct, 2: one_dose_65plus_pct, 3: booster_5plus_pct,
4: dem_pct_2000, 5: dem_pct_2020, 6: one_dose_5p_z, 7: one_dose_65p_z

31 / 66

across function

If we want to replace our variables with z-scores, we can use the
across() function to perform many mutations at once:
covid_votes |>

mutate(across(one_dose_5plus_pct:dem_pct_2020, z_score))

A tibble: 3,114 x 8
fips county state one_dose_5plus~1 one_d~2 boost~3 dem_p~4 dem_p~5
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 26039 Crawford County MI -0.508 -0.829 0.531 0.340 0.0471
2 40015 Caddo County OK 1.40 0.843 0.439 0.556 -0.387
3 17007 Boone County IL 0.556 0.795 0.927 0.163 0.563
4 12055 Highlands County FL 0.404 0.720 -0.135 0.0402 -0.0487
5 34029 Ocean County NJ 0.549 0.843 0.623 0.624 0.109
6 01067 Henry County AL -0.314 -0.0545 -0.799 0.0255 -0.328
7 27037 Dakota County MN 1.24 0.843 2.40 0.598 1.41
8 27115 Pine County MN -0.452 -0.102 0.577 0.612 0.0393
9 51750 Radford city VA -1.49 -1.16 -2.47 0.556 1.25
10 22009 Avoyelles Parish LA -0.231 -0.564 -0.424 0.501 -0.280
... with 3,104 more rows, and abbreviated variable names
1: one_dose_5plus_pct, 2: one_dose_65plus_pct, 3: booster_5plus_pct,
4: dem_pct_2000, 5: dem_pct_2020

32 / 66

Alternative approach

We could also target all the numeric variables:
covid_votes |>

mutate(across(where(is.numeric), z_score))

A tibble: 3,114 x 8
fips county state one_dose_5plus~1 one_d~2 boost~3 dem_p~4 dem_p~5
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 26039 Crawford County MI -0.508 -0.829 0.531 0.340 0.0471
2 40015 Caddo County OK 1.40 0.843 0.439 0.556 -0.387
3 17007 Boone County IL 0.556 0.795 0.927 0.163 0.563
4 12055 Highlands County FL 0.404 0.720 -0.135 0.0402 -0.0487
5 34029 Ocean County NJ 0.549 0.843 0.623 0.624 0.109
6 01067 Henry County AL -0.314 -0.0545 -0.799 0.0255 -0.328
7 27037 Dakota County MN 1.24 0.843 2.40 0.598 1.41
8 27115 Pine County MN -0.452 -0.102 0.577 0.612 0.0393
9 51750 Radford city VA -1.49 -1.16 -2.47 0.556 1.25
10 22009 Avoyelles Parish LA -0.231 -0.564 -0.424 0.501 -0.280
... with 3,104 more rows, and abbreviated variable names
1: one_dose_5plus_pct, 2: one_dose_65plus_pct, 3: booster_5plus_pct,
4: dem_pct_2000, 5: dem_pct_2020

33 / 66

Alternative approach

We could also target only the first dose variables:
covid_votes |>

mutate(across(starts_with("one_dose"), z_score))

A tibble: 3,114 x 8
fips county state one_dose_5plus~1 one_d~2 boost~3 dem_p~4 dem_p~5
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 26039 Crawford County MI -0.508 -0.829 31.2 43.8 34.0
2 40015 Caddo County OK 1.40 0.843 30.3 46.4 27.1
3 17007 Boone County IL 0.556 0.795 35.1 41.8 42.2
4 12055 Highlands County FL 0.404 0.720 24.7 40.3 32.5
5 34029 Ocean County NJ 0.549 0.843 32.1 47.2 35.0
6 01067 Henry County AL -0.314 -0.0545 18.2 40.1 28.0
7 27037 Dakota County MN 1.24 0.843 49.5 46.9 55.7
8 27115 Pine County MN -0.452 -0.102 31.7 47.0 33.9
9 51750 Radford city VA -1.49 -1.16 1.79 46.4 53.1
10 22009 Avoyelles Parish LA -0.231 -0.564 21.9 45.7 28.8
... with 3,104 more rows, and abbreviated variable names
1: one_dose_5plus_pct, 2: one_dose_65plus_pct, 3: booster_5plus_pct,
4: dem_pct_2000, 5: dem_pct_2020

34 / 66

Notes on starts_with

starts_with is a tidyway (tidyselect)

It looks for an exact match from the beginning of characters

There are other functions too such as:

ends_with(): ends with an exact suffix

contains(): contains a literal string

matches(): matches a regular expression

num_range(): matches a numerical range like x01, x02, x03, etc.

35 / 66

Notes on starts_with

starts_with is a tidyway (tidyselect)

It looks for an exact match from the beginning of characters

There are other functions too such as:

ends_with(): ends with an exact suffix

contains(): contains a literal string

matches(): matches a regular expression

num_range(): matches a numerical range like x01, x02, x03, etc.

35 / 66

Notes on starts_with

starts_with is a tidyway (tidyselect)

It looks for an exact match from the beginning of characters

There are other functions too such as:

ends_with(): ends with an exact suffix

contains(): contains a literal string

matches(): matches a regular expression

num_range(): matches a numerical range like x01, x02, x03, etc.

35 / 66

Notes on starts_with

starts_with is a tidyway (tidyselect)

It looks for an exact match from the beginning of characters

There are other functions too such as:

ends_with(): ends with an exact suffix

contains(): contains a literal string

matches(): matches a regular expression

num_range(): matches a numerical range like x01, x02, x03, etc.

35 / 66

Notes on starts_with

starts_with is a tidyway (tidyselect)

It looks for an exact match from the beginning of characters

There are other functions too such as:

ends_with(): ends with an exact suffix

contains(): contains a literal string

matches(): matches a regular expression

num_range(): matches a numerical range like x01, x02, x03, etc.

35 / 66

Notes on starts_with

starts_with is a tidyway (tidyselect)

It looks for an exact match from the beginning of characters

There are other functions too such as:

ends_with(): ends with an exact suffix

contains(): contains a literal string

matches(): matches a regular expression

num_range(): matches a numerical range like x01, x02, x03, etc.

35 / 66

Notes on starts_with

starts_with is a tidyway (tidyselect)

It looks for an exact match from the beginning of characters

There are other functions too such as:

ends_with(): ends with an exact suffix

contains(): contains a literal string

matches(): matches a regular expression

num_range(): matches a numerical range like x01, x02, x03, etc.

35 / 66

Adding arguments to our function

What if we want to be able to control na.rm in the calls to mean()
and sd() in our z_score function? Add an argument!
z_score2 <- function(x, na.rm = FALSE){

(x - mean(x, na.rm = na.rm)) / sd(x, na.rm = na.rm)
}

head(z_score2(covid_votes$one_dose_5plus_pct))

[1] NA NA NA NA NA NA
head(z_score2(covid_votes$one_dose_5plus_pct, na.rm=TRUE))

[1] -0.5076545 1.3982427 0.5557809 0.4038615 0.5488754 -0.3143026

36 / 66

4. Causality review

37 / 66

Potential outcomes

Potential outcomes:

• Yi(1) is the value that the outcome would take if gave unit i
treatment and changed nothing else about them

• Yi(0) is the value that the outcome would take if gave unit i
no treatment and changed nothing else about them

• Not the possible values of the outcome

38 / 66

Potential outcomes

Potential outcomes:

• Yi(1) is the value that the outcome would take if gave unit i
treatment and changed nothing else about them

• Yi(0) is the value that the outcome would take if gave unit i
no treatment and changed nothing else about them

• Not the possible values of the outcome

38 / 66

Potential outcomes

Potential outcomes:

• Yi(1) is the value that the outcome would take if gave unit i
treatment and changed nothing else about them

• Yi(0) is the value that the outcome would take if gave unit i
no treatment and changed nothing else about them

• Not the possible values of the outcome
38 / 66

COVID-19 vaccine trials

Treatment: Ti = 1 if vaccinated, Ti = 0 if not

Outcome: Yi = 1 if acquired COVID after 12 weeks, Yi = 0 if not

• What are the potential outcomes Yi(0) and Yi(1)?

• Why not compare early volunteers for the vaccine to the overall
population?

39 / 66

5. Pivoting data longer

40 / 66

Mortality data
library(TPDdata)
mortality

A tibble: 217 x 52
country count~1 indic~2 `1972` `1973` `1974` `1975` `1976` `1977` `1978`
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Aruba ABW Mortal~ NA NA NA NA NA NA NA
2 Afghanistan AFG Mortal~ 291 285. 280. 274. 268 262. 256
3 Angola AGO Mortal~ NA NA NA NA NA NA NA
4 Albania ALB Mortal~ NA NA NA NA NA NA 97.2
5 Andorra AND Mortal~ NA NA NA NA NA NA NA
6 United Arab~ ARE Mortal~ 80.1 72.6 65.7 59.4 53.6 48.3 43.5
7 Argentina ARG Mortal~ 69.7 68.2 66.1 63.3 59.8 55.7 51.2
8 Armenia ARM Mortal~ NA NA NA NA 87.1 83.6 80.2
9 American Sa~ ASM Mortal~ NA NA NA NA NA NA NA
10 Antigua and~ ATG Mortal~ 26.9 25.1 23.5 22.1 20.8 19.5 18.3
... with 207 more rows, 42 more variables: `1979` <dbl>, `1980` <dbl>,
`1981` <dbl>, `1982` <dbl>, `1983` <dbl>, `1984` <dbl>, `1985` <dbl>,
`1986` <dbl>, `1987` <dbl>, `1988` <dbl>, `1989` <dbl>, `1990` <dbl>,
`1991` <dbl>, `1992` <dbl>, `1993` <dbl>, `1994` <dbl>, `1995` <dbl>,
`1996` <dbl>, `1997` <dbl>, `1998` <dbl>, `1999` <dbl>, `2000` <dbl>,
`2001` <dbl>, `2002` <dbl>, `2003` <dbl>, `2004` <dbl>, `2005` <dbl>,
`2006` <dbl>, `2007` <dbl>, `2008` <dbl>, `2009` <dbl>, `2010` <dbl>, ...

41 / 66

Pivoting longer

Mortality data in a "wide" format (years in columns)

We can convert this to country-year rows with pivot_longer()
mydata |>

pivot_longer(
cols = <variables to pivot>>,
names_to = <new variable to put column names>,
values_to = <new variable to put column values>

)

42 / 66

Pivoting the mortality data

mortality |>
select(-indicator) |>
pivot_longer(

cols=`1972`:`2020`,
names_to = "year",
values_to = "child_mortality"

)

A tibble: 10,633 x 4
country country_code year child_mortality
<chr> <chr> <chr> <dbl>
1 Aruba ABW 1972 NA
2 Aruba ABW 1973 NA
3 Aruba ABW 1974 NA
4 Aruba ABW 1975 NA
5 Aruba ABW 1976 NA
6 Aruba ABW 1977 NA
7 Aruba ABW 1978 NA
8 Aruba ABW 1979 NA
9 Aruba ABW 1980 NA
10 Aruba ABW 1981 NA
... with 10,623 more rows

43 / 66

Let’s do line plots!

mortality |>
select(-indicator) |>
pivot_longer(

cols=`1972`:`2020`,
names_to = "year",
values_to = "child_mortality"

) |>
ggplot(mapping = aes(x = year, y = child_mortality, group = country)) +
geom_line(alpha = 0.25)

44 / 66

Hmm, what’s going on?

0

100

200

300

1972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020
year

ch
ild

_m
or

ta
lit

y

45 / 66

Making sure year is numeric
By default, pivoted column names are characters, but we can
transform them:
mortality_long <- mortality |>

select(-indicator) |>
pivot_longer(

cols=`1972`:`2020`,
names_to = "year",
values_to = "child_mortality"

) |>
mutate(year = as.integer(year))

mortality_long

A tibble: 10,633 x 4
country country_code year child_mortality
<chr> <chr> <int> <dbl>
1 Aruba ABW 1972 NA
2 Aruba ABW 1973 NA
3 Aruba ABW 1974 NA
4 Aruba ABW 1975 NA
5 Aruba ABW 1976 NA
6 Aruba ABW 1977 NA
7 Aruba ABW 1978 NA
8 Aruba ABW 1979 NA
9 Aruba ABW 1980 NA
10 Aruba ABW 1981 NA
... with 10,623 more rows

46 / 66

Let’s (re)do line plots!

mortality_long |>
ggplot(mapping = aes(x = year, y = child_mortality, group= country)) +
geom_line(alpha=0.25)

47 / 66

There we go

0

100

200

300

1970 1980 1990 2000 2010 2020
year

ch
ild

_m
or

ta
lit

y

48 / 66

Spotify data

library(TPDdata)
spotify

A tibble: 490 x 54
Track N~1 Artist week1 week2 week3 week4 week5 week6 week7 week8 week9 week10
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 The Box Roddy~ 1 1 1 1 1 1 1 1 1 1
2 ROXANNE Arizo~ 2 4 5 4 4 4 6 7 9 21
3 Yummy Justi~ 3 6 17 17 17 24 15 32 NA NA
4 Circles Post ~ 4 7 9 10 7 10 11 10 17 26
5 BOP DaBaby 5 5 7 5 11 12 18 18 32 47
6 Falling Trevo~ 6 8 10 7 6 8 10 11 18 28
7 Dance Mo~ Tones~ 7 13 13 12 12 13 17 13 21 33
8 Bandit (~ Juice~ 8 11 14 14 15 20 27 26 42 NA
9 Futsal S~ Lil U~ 9 9 19 21 24 32 40 49 NA NA
10 everythi~ Billi~ 10 17 28 9 8 11 14 17 29 NA
... with 480 more rows, 42 more variables: week11 <dbl>, week12 <dbl>,
week13 <dbl>, week14 <dbl>, week15 <dbl>, week16 <dbl>, week17 <dbl>,
week18 <dbl>, week19 <dbl>, week20 <dbl>, week21 <dbl>, week22 <dbl>,
week23 <dbl>, week24 <dbl>, week25 <dbl>, week26 <dbl>, week27 <dbl>,
week28 <dbl>, week29 <dbl>, week30 <dbl>, week31 <dbl>, week32 <dbl>,
week33 <dbl>, week34 <dbl>, week35 <dbl>, week36 <dbl>, week37 <dbl>,
week38 <dbl>, week39 <dbl>, week40 <dbl>, week41 <dbl>, week42 <dbl>, ...

49 / 66

Pivoting not ideal

Last approach isn’t ideal because of the week prefix:
spotify |>

pivot_longer(
cols = c(-`Track Name`, -Artist),
names_to = "week_of_year",
values_to = "rank"

)

A tibble: 25,480 x 4
`Track Name` Artist week_of_year rank
<chr> <chr> <chr> <dbl>
1 The Box Roddy Ricch week1 1
2 The Box Roddy Ricch week2 1
3 The Box Roddy Ricch week3 1
4 The Box Roddy Ricch week4 1
5 The Box Roddy Ricch week5 1
6 The Box Roddy Ricch week6 1
7 The Box Roddy Ricch week7 1
8 The Box Roddy Ricch week8 1
9 The Box Roddy Ricch week9 1
10 The Box Roddy Ricch week10 1
... with 25,470 more rows

50 / 66

Removing a column name prefix

spotify |>
pivot_longer(

cols = c(-`Track Name`, -Artist),
names_to = "week_of_year",
values_to = "rank",
names_prefix = "week"

) |>
mutate(

week_of_year = as.integer(week_of_year)
)

51 / 66

Removing a column name prefix

A tibble: 25,480 x 4
`Track Name` Artist week_of_year rank
<chr> <chr> <int> <dbl>
1 The Box Roddy Ricch 1 1
2 The Box Roddy Ricch 2 1
3 The Box Roddy Ricch 3 1
4 The Box Roddy Ricch 4 1
5 The Box Roddy Ricch 5 1
6 The Box Roddy Ricch 6 1
7 The Box Roddy Ricch 7 1
8 The Box Roddy Ricch 8 1
9 The Box Roddy Ricch 9 1
10 The Box Roddy Ricch 10 1
... with 25,470 more rows

52 / 66

6. Joining datasets

53 / 66

Gapminder data

library(gapminder)
gapminder

A tibble: 1,704 x 6
country continent year lifeExp pop gdpPercap
<fct> <fct> <int> <dbl> <int> <dbl>
1 Afghanistan Asia 1952 28.8 8425333 779.
2 Afghanistan Asia 1957 30.3 9240934 821.
3 Afghanistan Asia 1962 32.0 10267083 853.
4 Afghanistan Asia 1967 34.0 11537966 836.
5 Afghanistan Asia 1972 36.1 13079460 740.
6 Afghanistan Asia 1977 38.4 14880372 786.
7 Afghanistan Asia 1982 39.9 12881816 978.
8 Afghanistan Asia 1987 40.8 13867957 852.
9 Afghanistan Asia 1992 41.7 16317921 649.
10 Afghanistan Asia 1997 41.8 22227415 635.
... with 1,694 more rows

54 / 66

Joining data sets

What if we want to add the child_motality variable to the
gapminder data?

Just add the columns?
gapminder |>

select(country, year) |>
head()

A tibble: 6 x 2
country year
<fct> <int>
1 Afghanistan 1952
2 Afghanistan 1957
3 Afghanistan 1962
4 Afghanistan 1967
5 Afghanistan 1972
6 Afghanistan 1977

mortality_long |>
select(country, year) |>
head()

A tibble: 6 x 2
country year
<chr> <int>
1 Aruba 1972
2 Aruba 1973
3 Aruba 1974
4 Aruba 1975
5 Aruba 1976
6 Aruba 1977

Rows are not aligned properly!

55 / 66

Joining data sets

What if we want to add the child_motality variable to the
gapminder data?

Just add the columns?

gapminder |>
select(country, year) |>
head()

A tibble: 6 x 2
country year
<fct> <int>
1 Afghanistan 1952
2 Afghanistan 1957
3 Afghanistan 1962
4 Afghanistan 1967
5 Afghanistan 1972
6 Afghanistan 1977

mortality_long |>
select(country, year) |>
head()

A tibble: 6 x 2
country year
<chr> <int>
1 Aruba 1972
2 Aruba 1973
3 Aruba 1974
4 Aruba 1975
5 Aruba 1976
6 Aruba 1977

Rows are not aligned properly!

55 / 66

Joining data sets

What if we want to add the child_motality variable to the
gapminder data?

Just add the columns?
gapminder |>

select(country, year) |>
head()

A tibble: 6 x 2
country year
<fct> <int>
1 Afghanistan 1952
2 Afghanistan 1957
3 Afghanistan 1962
4 Afghanistan 1967
5 Afghanistan 1972
6 Afghanistan 1977

mortality_long |>
select(country, year) |>
head()

A tibble: 6 x 2
country year
<chr> <int>
1 Aruba 1972
2 Aruba 1973
3 Aruba 1974
4 Aruba 1975
5 Aruba 1976
6 Aruba 1977

Rows are not aligned properly!

55 / 66

Key variables

A primary key is a variable or set of variables that uniquely
identifies rows in the data

• {country, year} in the gapminder data

A foreign key is the corresponding variable(s) in another table

• {country, year} in the mortality_long data

If we align the two tables based on these variables, we can add
variables from one to the other

56 / 66

Key variables

A primary key is a variable or set of variables that uniquely
identifies rows in the data

• {country, year} in the gapminder data

A foreign key is the corresponding variable(s) in another table

• {country, year} in the mortality_long data

If we align the two tables based on these variables, we can add
variables from one to the other

56 / 66

Key variables

A primary key is a variable or set of variables that uniquely
identifies rows in the data

• {country, year} in the gapminder data

A foreign key is the corresponding variable(s) in another table

• {country, year} in the mortality_long data

If we align the two tables based on these variables, we can add
variables from one to the other

56 / 66

Checking that the keys are unique

Things get weird if these keys are not unique. Let’s check.
Checking primary key is unique
gapminder |>

count(country, year) |>
filter(n>1)

A tibble: 0 x 3

Checking foreign key is unique
mortality_long |>

count(country, year) |>
filter(n>1)

A tibble: 0 x 3

57 / 66

left_join(): add variables to primary table

left_join() keeps all rows from the first argument/piped data:
gapminder |>

left_join(mortality_long) |>
select(country, year, lifeExp, pop, gdpPercap, child_mortality) |>
head(n = 6)

Joining with `by = join_by(country, year)`

A tibble: 6 x 6
country year lifeExp pop gdpPercap child_mortality
<chr> <int> <dbl> <int> <dbl> <dbl>
1 Afghanistan 1952 28.8 8425333 779. NA
2 Afghanistan 1957 30.3 9240934 821. NA
3 Afghanistan 1962 32.0 10267083 853. NA
4 Afghanistan 1967 34.0 11537966 836. NA
5 Afghanistan 1972 36.1 13079460 740. 291
6 Afghanistan 1977 38.4 14880372 786. 262.

Rows in primary table not in foreign table: new values are NA

58 / 66

inner_join(): add and filter

inner_join() adds the variables from the foreign table and dilters
to rows in both tables:
gapminder |>

inner_join(mortality_long) |>
select(country, year, lifeExp, pop, gdpPercap, child_mortality) |>
head(n=6)

Joining with `by = join_by(country, year)`

A tibble: 6 x 6
country year lifeExp pop gdpPercap child_mortality
<chr> <int> <dbl> <int> <dbl> <dbl>
1 Afghanistan 1972 36.1 13079460 740. 291
2 Afghanistan 1977 38.4 14880372 786. 262.
3 Afghanistan 1982 39.9 12881816 978. 231.
4 Afghanistan 1987 40.8 13867957 852. 198.
5 Afghanistan 1992 41.7 16317921 649. 166.
6 Afghanistan 1997 41.8 22227415 635. 142.

59 / 66

How inner joins work

Two data sets:

Finding matching keys:

60 / 66

How left joins work

Two data sets:

Keep all x keys:

61 / 66

More complicated example

library(nycflights13)
flights2 <- flights |>

select(year, time_hour, origin, dest, tailnum, carrier)
flights2

A tibble: 336,776 x 6
year time_hour origin dest tailnum carrier
<int> <dttm> <chr> <chr> <chr> <chr>
1 2013 2013-01-01 05:00:00 EWR IAH N14228 UA
2 2013 2013-01-01 05:00:00 LGA IAH N24211 UA
3 2013 2013-01-01 05:00:00 JFK MIA N619AA AA
4 2013 2013-01-01 05:00:00 JFK BQN N804JB B6
5 2013 2013-01-01 06:00:00 LGA ATL N668DN DL
6 2013 2013-01-01 05:00:00 EWR ORD N39463 UA
7 2013 2013-01-01 06:00:00 EWR FLL N516JB B6
8 2013 2013-01-01 06:00:00 LGA IAD N829AS EV
9 2013 2013-01-01 06:00:00 JFK MCO N593JB B6
10 2013 2013-01-01 06:00:00 LGA ORD N3ALAA AA
... with 336,766 more rows

62 / 66

Planes data

planes2 <- planes |>
select(tailnum, year, type, engine, seats)

planes2

A tibble: 3,322 x 5
tailnum year type engine seats
<chr> <int> <chr> <chr> <int>
1 N10156 2004 Fixed wing multi engine Turbo-fan 55
2 N102UW 1998 Fixed wing multi engine Turbo-fan 182
3 N103US 1999 Fixed wing multi engine Turbo-fan 182
4 N104UW 1999 Fixed wing multi engine Turbo-fan 182
5 N10575 2002 Fixed wing multi engine Turbo-fan 55
6 N105UW 1999 Fixed wing multi engine Turbo-fan 182
7 N107US 1999 Fixed wing multi engine Turbo-fan 182
8 N108UW 1999 Fixed wing multi engine Turbo-fan 182
9 N109UW 1999 Fixed wing multi engine Turbo-fan 182
10 N110UW 1999 Fixed wing multi engine Turbo-fan 182
... with 3,312 more rows

63 / 66

What happens with naive join?

flights2 |>
left_join(planes2)

Joining with `by = join_by(year, tailnum)`

A tibble: 336,776 x 9
year time_hour origin dest tailnum carrier type engine seats
<int> <dttm> <chr> <chr> <chr> <chr> <chr> <chr> <int>
1 2013 2013-01-01 05:00:00 EWR IAH N14228 UA <NA> <NA> NA
2 2013 2013-01-01 05:00:00 LGA IAH N24211 UA <NA> <NA> NA
3 2013 2013-01-01 05:00:00 JFK MIA N619AA AA <NA> <NA> NA
4 2013 2013-01-01 05:00:00 JFK BQN N804JB B6 <NA> <NA> NA
5 2013 2013-01-01 06:00:00 LGA ATL N668DN DL <NA> <NA> NA
6 2013 2013-01-01 05:00:00 EWR ORD N39463 UA <NA> <NA> NA
7 2013 2013-01-01 06:00:00 EWR FLL N516JB B6 <NA> <NA> NA
8 2013 2013-01-01 06:00:00 LGA IAD N829AS EV <NA> <NA> NA
9 2013 2013-01-01 06:00:00 JFK MCO N593JB B6 <NA> <NA> NA
10 2013 2013-01-01 06:00:00 LGA ORD N3ALAA AA <NA> <NA> NA
... with 336,766 more rows

64 / 66

Specify the joining variables

flights2 |>
left_join(planes2, by = "tailnum")

A tibble: 336,776 x 10
year.x time_hour origin dest tailnum carrier year.y type engine
<int> <dttm> <chr> <chr> <chr> <chr> <int> <chr> <chr>
1 2013 2013-01-01 05:00:00 EWR IAH N14228 UA 1999 Fixed ~ Turbo~
2 2013 2013-01-01 05:00:00 LGA IAH N24211 UA 1998 Fixed ~ Turbo~
3 2013 2013-01-01 05:00:00 JFK MIA N619AA AA 1990 Fixed ~ Turbo~
4 2013 2013-01-01 05:00:00 JFK BQN N804JB B6 2012 Fixed ~ Turbo~
5 2013 2013-01-01 06:00:00 LGA ATL N668DN DL 1991 Fixed ~ Turbo~
6 2013 2013-01-01 05:00:00 EWR ORD N39463 UA 2012 Fixed ~ Turbo~
7 2013 2013-01-01 06:00:00 EWR FLL N516JB B6 2000 Fixed ~ Turbo~
8 2013 2013-01-01 06:00:00 LGA IAD N829AS EV 1998 Fixed ~ Turbo~
9 2013 2013-01-01 06:00:00 JFK MCO N593JB B6 2004 Fixed ~ Turbo~
10 2013 2013-01-01 06:00:00 LGA ORD N3ALAA AA NA <NA> <NA>
... with 336,766 more rows, and 1 more variable: seats <int>

65 / 66

Change variables names

flights2 |>
left_join(planes2 |> rename(manufacture_year = year))

Joining with `by = join_by(tailnum)`

A tibble: 336,776 x 10
year time_hour origin dest tailnum carrier manufac~1 type engine
<int> <dttm> <chr> <chr> <chr> <chr> <int> <chr> <chr>
1 2013 2013-01-01 05:00:00 EWR IAH N14228 UA 1999 Fixe~ Turbo~
2 2013 2013-01-01 05:00:00 LGA IAH N24211 UA 1998 Fixe~ Turbo~
3 2013 2013-01-01 05:00:00 JFK MIA N619AA AA 1990 Fixe~ Turbo~
4 2013 2013-01-01 05:00:00 JFK BQN N804JB B6 2012 Fixe~ Turbo~
5 2013 2013-01-01 06:00:00 LGA ATL N668DN DL 1991 Fixe~ Turbo~
6 2013 2013-01-01 05:00:00 EWR ORD N39463 UA 2012 Fixe~ Turbo~
7 2013 2013-01-01 06:00:00 EWR FLL N516JB B6 2000 Fixe~ Turbo~
8 2013 2013-01-01 06:00:00 LGA IAD N829AS EV 1998 Fixe~ Turbo~
9 2013 2013-01-01 06:00:00 JFK MCO N593JB B6 2004 Fixe~ Turbo~
10 2013 2013-01-01 06:00:00 LGA ORD N3ALAA AA NA <NA> <NA>
... with 336,766 more rows, 1 more variable: seats <int>, and abbreviated
variable name 1: manufacture_year

66 / 66

