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Introduction to the course

• Why do we need to learn statistics?

• Applied statistics? Data science?

4 / 93



Why do we need to learn statistics?

1. To test ideas empirically

2. To make inferences from sample to population

3. To make evidence-based decisions/policy
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Applied statistics? Data science?
• Applied statistics includes planning for the collection of data,

managing data, analyzing, interpreting and drawing conclusions
from data, and identifying problems, solutions and
opportunities using the analysis (UM-Dearborn)

• How about the data science process?

Figure 1: Data science process (Hadley)
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Our approach

The mix of applied statistics and data science, slightly leaning more
toward data science

E.g., calculating a sample variance of a set {2, 7, 7, 4, 5, 1, 3}

Instead of this,
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Our approach (cont)

We will focus more on
x<-c(2, 7, 7, 4, 5, 1, 3)
var(x)

## [1] 5.47619
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What problems are applied statisticians/data
scientists working on?
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Causality
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Prediction
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Measurement
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Visualization
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Understanding how the past matters
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2. Course details
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Brief introduction

Name, N of previous stat/programming classes, main statistical
program/package (if any), etc.
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What will you learn in this class?

• Summerize and visualize data

• Wrangle messy data into tidy forms

• Evaluate claims about causality

• Be able to use linear regression to analyze data

• Understand uncertainty in data analysis and how to quantify it

• Use professional tools like R and RStudio
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Teaching philosophy

• Deliberate pacing and tons of support

• Emphasize intuition and computational approaches over
mathematical equations

• Practice, practice, practice
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How to become a better programmer
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How to become a better programmer
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Prerequisites of the course

• None (no prior programming or statistics knowledge)
• I am excited to teach this class with a room full of individuals

who are just enthusiastic about data and analyses as much as I
am!
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Class meetings

• Three text book:
• Modern Dive (MD) (free online)
• Quantitative Social Science (QSS): An Introduction in tidyverse

by Kosuke Imai (not free)
• Introduction to Modern Statistics (IDS) (free online)

• Sometimes same materials in two/three different books.
Choose which helps most.

• Lectures:
• Broad coverage of the course materials
• Coding demonstrations (follow along with your laptop) (if any)
• Slides will be posted to the website shortly (or the night) before

lecture
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Assignments

• Roughly weekly homework
• It will be posted on Thursday morning, and due following

Wednesday
• Your assignments will not be graded but highly encourage

finishing those!
• Final project (optional), though I highly encourage everyone to

do so!
• Especially if you find assignments too easy, this would be an

opportunity to practice your data/analysis skills (of course with
tons of my support/assistance)! At the end, I will provide brief
comments on your project.

• Another option for advanced individuals: after a couple of
assignments, if the assignments are still easy, let me know; I
will assign relevant exercises from the QSS book.
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Computing

• We will use the R statistical environment to analyze data
• It’s free
• A popular option for data analysis
• Academics, 538, NYT, Facebook, Google, Twitter, nonprofits,

governments all use R

• Interface with R via a program called R studio
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3. R and Rmarkdown
introduction
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Two computer revolutions

The frontier of computing Where statistical computing lives

• Touch-based interfaces

• Single app at a time
• Little multitasking between
apps

• Hides the file system

• Windows and pointers
• Multi-tsking, multiple
windows

• Works heavily with the file
system

• Underneath it’s UNIX and
the command line
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Plain-text tools for data analysis

For more info, visit
https://plain-text.co/

• often free, open-sourced, and powerful

• Large, friendly communities around
them

• Tons of resources
• But. . . far from the touch-based
paradigm of modern computing

• So why use them?
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The process of applied
statistics/data science is
intrinsically messy
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Office vs. engineering model of computing

What’s real in the project? How are changes managed?
In the Office model In the Engineering model

• Formatted documents are
real

• Intermediate outputs
(copy/pasted into
documents)

• Changes are tracked inside
files

• Final output is the file you
are working on (e.g., Word
doc or maybe converted to
a PDF).

• Plain-text files are real
• Intermediate outputs are
produced via code, often
inside documents

• Changes are tracked outside
files

• Final outputs are assembled
programatically and
converted to desired output
format
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Pros and cons to each approach

• Office model:
• Everyone knows Word, Excel, Google Docs, etc.

• “Track Changes” is powerful and easy
• Wait, how did I make this figure and table?
• Ah, I found the codes but, which one generated this figure and

table?
• An_final_final_real_final_lastedits_v57.docx

• Engineering model:
• Plain text is universally portable
• Push button, recreate analysis
• Why won’t R just do what I want!
• Version control is a pain

We’ll tend toward the Engineering model because it’s better suited
to keep the mess in check
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Let’s take a touR

30 / 93



R vs. RStudio
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R vs. RStudio (cont)
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3. Using RMarkdown
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The acts of coding

Figure 2: Writing codes

Figure 3: Looking at
output

Figure 4: Taking notes
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Rmarkdown files to the rescue

Figure 5: Rmarkdown
file

Keep code and notes
together in plain text

Figure 6: Knit in R

Figure 7: PDF output

Produce nice-looking
outputs in different
formats
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Markdown: formatting in plain text
Non-code text in Rmd files is plain text with formatting instructions
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Remember what’s real
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How to learn R

Try to type your code by
hand
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Typing speeds up the try-fail cycle

Physically typing the code is best way to familiarize yourself with R
and the try-fail-try-fail-try-succeed cycle
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What R looks like

Code that you can type and run:
## Any R code that begins with the # character is a comment
## Comments are ignored by R

my_numbers <- c(4, 8, 15, 16, 23, 42) # Anything after # is also a comment

Output from code prefixed by ## by convention:
my_numbers

## [1] 4 8 15 16 23 42

Output also has a counter in brackets when over one line:
options(width = 45)
letters

## [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"
## [11] "k" "l" "m" "n" "o" "p" "q" "r" "s" "t"
## [21] "u" "v" "w" "x" "y" "z"
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Everything in R has a name

my_numbers # just created this

## [1] 4 8 15 16 23 42

letters # this is build into R

## [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"
## [11] "k" "l" "m" "n" "o" "p" "q" "r" "s" "t"
## [21] "u" "v" "w" "x" "y" "z"

pi # also built in

## [1] 3.141593

Some names are forbidden (NA, TRUE, FALSE, etc) or strongly not
recommended (c, mean, table)
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We do things in R with functions

Functions take in objects, perform actions, and return outputs:
mean(x = my_numbers)

## [1] 18

• x is the argument name,

• my_numbers is what we’re passing to that argument

If you omit the argument name, R will assume the default argument
order:
mean(my_numbers)

## [1] 18
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Getting help with R

How do we know the default argument order? Look to help files:
help(mean)
?mean #shorter

• Sometimes inscrutable, so look elsewhere:
• Google, StackOverflow, Twitter, RStudio Community
• Ask on the Teams Chat

• Get help early before becoming too frustrated! -Easy to
overlook small issues like missing commas, typos, etc.
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Functions live in packages

Packages are bundles of functions written by other uses that we can
use

Install packages using install.packages() to have them on your
machine:
install.packages("ggplot2")

Load them into your R session with library():
library(ggplot2)

Now we can use any function provided by ggplot2
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Functions live in packages

We can also use the mypackage:: prefix to access package
functions without loading:
knitr::kable(head(mtcars))

mpg cyl disp hp drat wt qsec vs am gear carb

Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4
Wag

21.0 6 160 110 3.90 2.875 17.02 0 1 4 4

Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4
Drive

21.4 6 258 110 3.08 3.215 19.44 1 0 3 1

Hornet
Sportabout

18.7 8 360 175 3.15 3.440 17.02 0 0 3 2

Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
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R tutorials & course packages

# installing course packages
my_packages <- c("tidyverse", "usethis", "devtools", "learnr",

"tinytex", "gitcreds", "broom")
install.packages(my_packages, repos = "http://cran.rstudio.com")

remotes::install_github("kosukeimai/qss-package", build_vignettes = TRUE)

# installing R tutorials locally
remotes::install_github("rstudio/learnr")

remotes::install_github("rstudio-education/gradethis")

remotes::install_github("seungho-an/TPDtutor")

# installing tiny tex
tinytex::install_tinytex()
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4.
Data visualizations
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4.1
Building plots by layers
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Midwest data
midwest

## # A tibble: 437 x 28
## PID county state area popto~1 popde~2
## <int> <chr> <chr> <dbl> <int> <dbl>
## 1 561 ADAMS IL 0.052 66090 1271.
## 2 562 ALEXAND~ IL 0.014 10626 759
## 3 563 BOND IL 0.022 14991 681.
## 4 564 BOONE IL 0.017 30806 1812.
## 5 565 BROWN IL 0.018 5836 324.
## 6 566 BUREAU IL 0.05 35688 714.
## 7 567 CALHOUN IL 0.017 5322 313.
## 8 568 CARROLL IL 0.027 16805 622.
## 9 569 CASS IL 0.024 13437 560.
## 10 570 CHAMPAI~ IL 0.058 173025 2983.
## # ... with 427 more rows, 22 more variables:
## # popwhite <int>, popblack <int>,
## # popamerindian <int>, popasian <int>,
## # popother <int>, percwhite <dbl>,
## # percblack <dbl>, percamerindan <dbl>,
## # percasian <dbl>, percother <dbl>,
## # popadults <int>, perchsd <dbl>, ...
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Building up a graph in pieces

Create ggplot object and direct it to the correct data:
p <- ggplot(data = midwest)

Mapping: tell ggplot what visual aesthetics correspond to which
variables
p <- ggplot(data = midwest,

mapping = aes(x = popdensity,
y = percbelowpoverty))

Other aesthetic mappings: color, shape, size, etc.
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Adding a geom layer

ggplot(data = midwest,
mapping = aes(x = popdensity,

y = percbelowpoverty)) +
geom_point()
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Trying a new geom

ggplot(data = midwest,
mapping = aes(x = popdensity,

y = percbelowpoverty)) +
geom_smooth()
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Layering geoms is additive

ggplot(data = midwest,
mapping = aes(x = popdensity,

y = percbelowpoverty)) +
geom_point() +
geom_smooth() +
scale_x_log10()
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Geoms are functions

Geoms can take arguments:
ggplot(data = midwest,

mapping = aes(x = popdensity,
y = percbelowpoverty)) +

geom_point() +
geom_smooth(method = "lm", se = FALSE) +
scale_x_log10()

Tells geom_smooth to do a linear fit with no error region
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Adding informative labels

ggplot(data = midwest,
mapping = aes(x = popdensity,

y = percbelowpoverty)) +
geom_point() +
geom_smooth(method = "loess", se = FALSE) + scale_x_log10() +
labs(x = "Population Density",

y = "Percent of County Below Poverty Line",
title = "Poverty and Population Density",
subtitle = "Among Counties in the Midwest",
source = "US Census, 2000")
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Mapping vs. setting asthetics

ggplot(data = midwest,
mapping = aes(x = popdensity,

y = percbelowpoverty,
color = "purple")) +

geom_point() +
geom_smooth() +
scale_x_log10()
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Wait what?
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Mapping always refers to variables

If passed a value other than a variable name, ggplot will implicitly
create a variable with that value (in this case "purple" that is
constant)

ggplot(data = midwest,
mapping = aes(x = popdensity,

y = percbelowpoverty,
color = "purple")) +

geom_point() +
geom_smooth() +
scale_x_log10()
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Setting aesthetics

Set the color outside the mapping = aes() format

ggplot(data = midwest,
mapping = aes(x = popdensity,

y = percbelowpoverty)) +
geom_point(color = "purple") +
geom_smooth() +
scale_x_log10()
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Mapping more aesthetics

ggplot(data = midwest,
mapping = aes(x = popdensity,

y = percbelowpoverty,
color = state,
fill = state)) +

geom_point() +
geom_smooth() +
scale_x_log10()
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Mappings can be done on a per geom basis

ggplot(data = midwest,
mapping = aes(x = popdensity,

y = percbelowpoverty)) +
geom_point(mapping = aes(color = state)) +
geom_smooth(color = "black") +
scale_x_log10()
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4.2
Histograms and boxplots
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Histograms

Histograms show where there are more or fewer observations of a
numeric variable
ggplot(data = midwest,

mapping = aes(x = percbelowpoverty)) +
geom_histogram()

Split up range of variable into bins, count how many are in each bin

y aesthetic calculated automatically
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Creating small multiples with facets

Small multiples: a series of similar graphs with the same scale/axes
to help with comparing different participation of a dataset
ggplot(data = midwest,

mapping = aes(x = percbelowpoverty)) +
geom_histogram() +
facet_wrap(~ state)

We’ll see more of the ~ variable syntax (called a formula)
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Density as alternative to histograms

A kernel density plot is a smoothed version of a histogram and
slightly easier to overlay
ggplot(data = midwest,

mapping = aes(x = percbelowpoverty,
fill = state, color = state)) +

geom_density(alpha = 0.3)
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Boxplots

Boxplots are another way to compare distributions across discrete
groups.
ggplot(data = midwest,

mapping = aes(x = state,
y = percbelowpoverty)) +

geom_boxplot()
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Boxplots in R

• “Box” represents middle 50% of the data

• 25% of the data above the box, 25% below
• Width of the box is called the inter quartile range (IQR)

• Horizontal line in the box is the median
• 50% of the data above the median, 50% below

• “Whiskers” represents either:
• 1.5 × IQR or max/min of the data, whichever is smaller
• Points beyond whiskers are outliers
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4.3
Grouped data
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Gapminder data

library(dplyr)
library(gapminder)
glimpse(gapminder)

## Rows: 1,704
## Columns: 6
## $ country <fct> "Afghanistan", "Afghanist~
## $ continent <fct> Asia, Asia, Asia, Asia, A~
## $ year <int> 1952, 1957, 1962, 1967, 1~
## $ lifeExp <dbl> 28.801, 30.332, 31.997, 3~
## $ pop <int> 8425333, 9240934, 1026708~
## $ gdpPercap <dbl> 779.4453, 820.8530, 853.1~
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Let’s plot the trend in income

ggplot(data = gapminder,
mapping = aes(x = year,

y = gdpPercap)) +
geom_line()
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Tell geom_line how to group the lines

ggplot(data = gapminder,
mapping = aes(x = year,

y = gdpPercap)) +
geom_line(mapping = aes(group = country))
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Scales

ggplot(data = gapminder,
mapping = aes(x = year,

y = gdpPercap)) +
geom_line(mapping = aes(group = country), color = "grey70") +
geom_smooth(method = "loess") +
scale_y_log10(labels = scales::dollar)
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